{"title":"Delivery of Carbon Dioxide to an Electrode Surface Using a Nanopipette","authors":"Jaimy Monteiro, Harry Dunne, Kim McKelvey","doi":"10.1039/d4fd00124a","DOIUrl":null,"url":null,"abstract":"We have developed a new scanning probe approach for the delivery of a gas-phase reactant to the surface of an electrocatalyst through a self-replenishing bubble located at the end of a scanning probe. This approach enables local electrocatalytic rates to be detected under very-high mass transport rates due to the small distance between the gas-phase reactant in the bubble and the electrocatalyst surface. Here we report experiments for the delivery of carbon dioxide to a gold ultramicroelectrode surface using a micron-scale nanopipette. The approach curve profiles that we measure suggest a complex interplay between carbon dioxide reduction and hydrogen evolution which is mediated by both the probe-electrode distance and the potential of the gold ultramicroelectrode.","PeriodicalId":76,"journal":{"name":"Faraday Discussions","volume":"21 1","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Faraday Discussions","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1039/d4fd00124a","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
We have developed a new scanning probe approach for the delivery of a gas-phase reactant to the surface of an electrocatalyst through a self-replenishing bubble located at the end of a scanning probe. This approach enables local electrocatalytic rates to be detected under very-high mass transport rates due to the small distance between the gas-phase reactant in the bubble and the electrocatalyst surface. Here we report experiments for the delivery of carbon dioxide to a gold ultramicroelectrode surface using a micron-scale nanopipette. The approach curve profiles that we measure suggest a complex interplay between carbon dioxide reduction and hydrogen evolution which is mediated by both the probe-electrode distance and the potential of the gold ultramicroelectrode.