High Throughput calculations and machine learning modeling of $^{17}\text{O}$ NMR in non-magnetic oxides

IF 4.3 3区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Zhiyuan Li, Bo Zhao, Hongbin Zhang, Yixuan Zhang
{"title":"High Throughput calculations and machine learning modeling of $^{17}\\text{O}$ NMR in non-magnetic oxides","authors":"Zhiyuan Li, Bo Zhao, Hongbin Zhang, Yixuan Zhang","doi":"10.1039/d4fd00128a","DOIUrl":null,"url":null,"abstract":"The only NMR active oxygen isotope, Oxygen-17($^{17}\\text{O}$ ), serves as a sensitive probe due to its large chemical shift range, the electric field gradient at the oxygen site, and the quadrupolar interaction. Consequently, $^{17}\\text{O}$ solid-state NMR offers unique insights into local structures and finds significant applications in the study of disorder, reactivity, and host-guest chemistry. Despite recent advances in sensitivity enhancement, isotopic labeling, and NMR crystallography, the application of $^{17}\\text{O}$ solid-state NMR is still hindered by low natural abundance, costly enrichment, and challenges in handling spectrum signals. Density functional theory calculations and machine learning techniques offer an alternative approach to mapping the local crystal structures to NMR parameters. However, the lack of high-quality data remains a challenge, despite the establishment of some datasets. In this study, we implement and execute a high-throughput workflow combining AiiDA and Castep to evaluate the NMR parameters. Focusing on non-magnetic oxides, we have collected over 7100 binary, ternary, and quaternary compounds from the Materials Project and performed calculations. Furthermore, using various descriptors for the local crystalline environments, we model the $^{17}\\text{O}$ NMR using machine learning techniques, further enhancing our ability to predict and understand $^{17}\\text{O}$ NMR parameters in oxide crystals.","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1039/d4fd00128a","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

The only NMR active oxygen isotope, Oxygen-17($^{17}\text{O}$ ), serves as a sensitive probe due to its large chemical shift range, the electric field gradient at the oxygen site, and the quadrupolar interaction. Consequently, $^{17}\text{O}$ solid-state NMR offers unique insights into local structures and finds significant applications in the study of disorder, reactivity, and host-guest chemistry. Despite recent advances in sensitivity enhancement, isotopic labeling, and NMR crystallography, the application of $^{17}\text{O}$ solid-state NMR is still hindered by low natural abundance, costly enrichment, and challenges in handling spectrum signals. Density functional theory calculations and machine learning techniques offer an alternative approach to mapping the local crystal structures to NMR parameters. However, the lack of high-quality data remains a challenge, despite the establishment of some datasets. In this study, we implement and execute a high-throughput workflow combining AiiDA and Castep to evaluate the NMR parameters. Focusing on non-magnetic oxides, we have collected over 7100 binary, ternary, and quaternary compounds from the Materials Project and performed calculations. Furthermore, using various descriptors for the local crystalline environments, we model the $^{17}\text{O}$ NMR using machine learning techniques, further enhancing our ability to predict and understand $^{17}\text{O}$ NMR parameters in oxide crystals.
非磁性氧化物中 $^{17}\text{O}$ NMR 的高通量计算和机器学习建模
唯一具有核磁共振活性的氧同位素氧-17($^{17}\text{O}$)因其化学位移范围大、氧位点的电场梯度以及四极相互作用而成为灵敏的探针。因此,$^{17}text{O}$ 固态核磁共振能提供对局部结构的独特见解,并在无序、反应性和主-客体化学研究中得到重要应用。尽管最近在灵敏度增强、同位素标记和 NMR 晶体学方面取得了进展,但 $^{17}\text{O}$ 固态 NMR 的应用仍然受到天然丰度低、富集成本高以及处理频谱信号的挑战等因素的阻碍。密度泛函理论计算和机器学习技术为将局部晶体结构映射到 NMR 参数提供了另一种方法。然而,尽管建立了一些数据集,但高质量数据的缺乏仍然是一个挑战。在本研究中,我们实施并执行了结合 AiiDA 和 Castep 的高通量工作流程,以评估核磁共振参数。以非磁性氧化物为重点,我们从材料项目中收集了 7100 多种二元、三元和四元化合物,并进行了计算。此外,我们使用各种局部晶体环境描述符,利用机器学习技术建立了 $^{17}\text{O}$ NMR 模型,进一步提高了我们预测和理解氧化物晶体中 $^{17}\text{O}$ NMR 参数的能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.20
自引率
4.30%
发文量
567
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信