{"title":"Asymptotic Expansions for Additive Measures of Branching Brownian Motions","authors":"Haojie Hou, Yan-Xia Ren, Renming Song","doi":"10.1007/s10959-024-01347-z","DOIUrl":null,"url":null,"abstract":"<p>Let <i>N</i>(<i>t</i>) be the collection of particles alive at time <i>t</i> in a branching Brownian motion in <span>\\(\\mathbb {R}^d\\)</span>, and for <span>\\(u\\in N(t)\\)</span>, let <span>\\({\\textbf{X}}_u(t)\\)</span> be the position of particle <i>u</i> at time <i>t</i>. For <span>\\(\\theta \\in \\mathbb {R}^d\\)</span>, we define the additive measures of the branching Brownian motion by </p><span>$$\\begin{aligned}{} & {} \\mu _t^\\theta (\\textrm{d}{\\textbf{x}}):= e^{-(1+\\frac{\\Vert \\theta \\Vert ^2}{2})t}\\sum _{u\\in N(t)} e^{-\\theta \\cdot {\\textbf{X}}_u(t)} \\delta _{\\left( {\\textbf{X}}_u(t)+\\theta t\\right) }(\\textrm{d}{\\textbf{x}}),\\\\{} & {} \\quad \\textrm{here}\\,\\, \\Vert \\theta \\Vert \\mathrm {is\\, the\\, Euclidean\\, norm\\, of}\\,\\, \\theta . \\end{aligned}$$</span><p>In this paper, under some conditions on the offspring distribution, we give asymptotic expansions of arbitrary order for <span>\\(\\mu _t^\\theta (({\\textbf{a}}, {\\textbf{b}}])\\)</span> and <span>\\(\\mu _t^\\theta ((-\\infty , {\\textbf{a}}])\\)</span> for <span>\\(\\theta \\in \\mathbb {R}^d\\)</span> with <span>\\(\\Vert \\theta \\Vert <\\sqrt{2}\\)</span>, where <span>\\((\\textbf{a}, \\textbf{b}]:=(a_1, b_1]\\times \\cdots \\times (a_d, b_d]\\)</span> and <span>\\((-\\infty , \\textbf{a}]:=(-\\infty , a_1]\\times \\cdots \\times (-\\infty , a_d]\\)</span> for <span>\\(\\textbf{a}=(a_1,\\cdots , a_d)\\)</span> and <span>\\(\\textbf{b}=(b_1,\\cdots , b_d)\\)</span>. These expansions sharpen the asymptotic results of Asmussen and Kaplan (Stoch Process Appl 4(1):1–13, 1976) and Kang (J Korean Math Soc 36(1): 139–157, 1999) and are analogs of the expansions in Gao and Liu (Sci China Math 64(12):2759–2774, 2021) and Révész et al. (J Appl Probab 42(4):1081–1094, 2005) for branching Wiener processes (a particular class of branching random walks) corresponding to <span>\\(\\theta ={\\textbf{0}}\\)</span>.\n</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10959-024-01347-z","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Let N(t) be the collection of particles alive at time t in a branching Brownian motion in \(\mathbb {R}^d\), and for \(u\in N(t)\), let \({\textbf{X}}_u(t)\) be the position of particle u at time t. For \(\theta \in \mathbb {R}^d\), we define the additive measures of the branching Brownian motion by
In this paper, under some conditions on the offspring distribution, we give asymptotic expansions of arbitrary order for \(\mu _t^\theta (({\textbf{a}}, {\textbf{b}}])\) and \(\mu _t^\theta ((-\infty , {\textbf{a}}])\) for \(\theta \in \mathbb {R}^d\) with \(\Vert \theta \Vert <\sqrt{2}\), where \((\textbf{a}, \textbf{b}]:=(a_1, b_1]\times \cdots \times (a_d, b_d]\) and \((-\infty , \textbf{a}]:=(-\infty , a_1]\times \cdots \times (-\infty , a_d]\) for \(\textbf{a}=(a_1,\cdots , a_d)\) and \(\textbf{b}=(b_1,\cdots , b_d)\). These expansions sharpen the asymptotic results of Asmussen and Kaplan (Stoch Process Appl 4(1):1–13, 1976) and Kang (J Korean Math Soc 36(1): 139–157, 1999) and are analogs of the expansions in Gao and Liu (Sci China Math 64(12):2759–2774, 2021) and Révész et al. (J Appl Probab 42(4):1081–1094, 2005) for branching Wiener processes (a particular class of branching random walks) corresponding to \(\theta ={\textbf{0}}\).