{"title":"On the Generalized Birth–Death Process and Its Linear Versions","authors":"P. Vishwakarma, K. K. Kataria","doi":"10.1007/s10959-024-01355-z","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we consider a generalized birth–death process (GBDP) and examine its linear versions. Using its transition probabilities, we obtain the system of differential equations that governs its state probabilities. The distribution function of its waiting time in state <i>s</i> given that it starts in state <i>s</i> is obtained. For a linear version of it, namely the generalized linear birth–death process (GLBDP), we obtain the probability generating function, mean, variance and the probability of ultimate extinction of population. Also, we obtain the maximum likelihood estimate of its parameters. The differential equations that govern the joint cumulant generating functions of the population size with cumulative births and cumulative deaths are derived. In the case of constant birth and death rates in GBDP, the explicit forms of the state probabilities, joint probability mass functions of population size with cumulative births and cumulative deaths, and their marginal probability mass functions are obtained. It is shown that the Laplace transform of an integral of GBDP satisfies its Kolmogorov backward equation with certain scaled parameters. The first two moments of the path integral of GLBDP are obtained. Also, we consider the immigration effect in GLBDP for two different cases. An application of a linear version of GBDP and its path integral to a vehicles parking management system is discussed. Later, we introduce a time-changed version of the GBDP where time is changed via an inverse stable subordinator. We show that its state probabilities are governed by a system of fractional differential equations.\n</p>","PeriodicalId":54760,"journal":{"name":"Journal of Theoretical Probability","volume":"11 1","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2024-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Theoretical Probability","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10959-024-01355-z","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, we consider a generalized birth–death process (GBDP) and examine its linear versions. Using its transition probabilities, we obtain the system of differential equations that governs its state probabilities. The distribution function of its waiting time in state s given that it starts in state s is obtained. For a linear version of it, namely the generalized linear birth–death process (GLBDP), we obtain the probability generating function, mean, variance and the probability of ultimate extinction of population. Also, we obtain the maximum likelihood estimate of its parameters. The differential equations that govern the joint cumulant generating functions of the population size with cumulative births and cumulative deaths are derived. In the case of constant birth and death rates in GBDP, the explicit forms of the state probabilities, joint probability mass functions of population size with cumulative births and cumulative deaths, and their marginal probability mass functions are obtained. It is shown that the Laplace transform of an integral of GBDP satisfies its Kolmogorov backward equation with certain scaled parameters. The first two moments of the path integral of GLBDP are obtained. Also, we consider the immigration effect in GLBDP for two different cases. An application of a linear version of GBDP and its path integral to a vehicles parking management system is discussed. Later, we introduce a time-changed version of the GBDP where time is changed via an inverse stable subordinator. We show that its state probabilities are governed by a system of fractional differential equations.
期刊介绍:
Journal of Theoretical Probability publishes high-quality, original papers in all areas of probability theory, including probability on semigroups, groups, vector spaces, other abstract structures, and random matrices. This multidisciplinary quarterly provides mathematicians and researchers in physics, engineering, statistics, financial mathematics, and computer science with a peer-reviewed forum for the exchange of vital ideas in the field of theoretical probability.