Localized Surface Plasmon Resonance in Ag-In-Te Based Quantum Dots and Core/Shell Nanocrystals

IF 2.6 4区 材料科学 Q2 CHEMISTRY, MULTIDISCIPLINARY
ChemNanoMat Pub Date : 2024-06-20 DOI:10.1002/cnma.202400297
Dr. Debadrita Bhattacharya, Dr. Tushar Debnath
{"title":"Localized Surface Plasmon Resonance in Ag-In-Te Based Quantum Dots and Core/Shell Nanocrystals","authors":"Dr. Debadrita Bhattacharya,&nbsp;Dr. Tushar Debnath","doi":"10.1002/cnma.202400297","DOIUrl":null,"url":null,"abstract":"<p>Localized surface plasmon resonance (LSPR) in plasmonic nanomaterials can concentrate light in the nano-dimension, leading to an enhancement of the light intensity by order of magnitude. While LSPR is a subject of extensive research in chalcogenide semiconductor nanocrystals (NCs), research on tellurium multinary chalcogenides (MnCs) remains elusive, possibly due to non-availability of the corresponding quantum dots (QDs). In this report, we show the sequential switching of plasmonic to non-plasmonic properties during the colloidal synthesis of AgInTe<sub>2</sub> QDs. The reaction passes through several intermediates including AgInTe<sub>2</sub>/AgIn<sub>5</sub>Te<sub>8</sub> core/shell NCs, AgInTe<sub>2</sub> microrods (MRs), AgInTe<sub>2</sub> QDs, and finally AgInTe<sub>2</sub> quantum dot chain (QDC). Here, the AgInTe<sub>2</sub>/AgIn<sub>5</sub>Te<sub>8</sub> core/shell NCs and AgInTe<sub>2</sub> QDs depict strong LSPR absorption in the visible-NIR region until ~2000 nm. We propose that small-size quantum confined and cation deficient AgInTe<sub>2</sub> particles are responsible for the observation of LSPR modes in both cases due to presence of the free carriers (holes). Our work on developing Te-based plasmonic MnC QDs may find significant advancement in the nanoscale light-matter interaction in semiconductor research.</p>","PeriodicalId":54339,"journal":{"name":"ChemNanoMat","volume":"10 9","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemNanoMat","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cnma.202400297","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Localized surface plasmon resonance (LSPR) in plasmonic nanomaterials can concentrate light in the nano-dimension, leading to an enhancement of the light intensity by order of magnitude. While LSPR is a subject of extensive research in chalcogenide semiconductor nanocrystals (NCs), research on tellurium multinary chalcogenides (MnCs) remains elusive, possibly due to non-availability of the corresponding quantum dots (QDs). In this report, we show the sequential switching of plasmonic to non-plasmonic properties during the colloidal synthesis of AgInTe2 QDs. The reaction passes through several intermediates including AgInTe2/AgIn5Te8 core/shell NCs, AgInTe2 microrods (MRs), AgInTe2 QDs, and finally AgInTe2 quantum dot chain (QDC). Here, the AgInTe2/AgIn5Te8 core/shell NCs and AgInTe2 QDs depict strong LSPR absorption in the visible-NIR region until ~2000 nm. We propose that small-size quantum confined and cation deficient AgInTe2 particles are responsible for the observation of LSPR modes in both cases due to presence of the free carriers (holes). Our work on developing Te-based plasmonic MnC QDs may find significant advancement in the nanoscale light-matter interaction in semiconductor research.

Abstract Image

基于 Ag-In-Te 的量子点和核/壳纳米晶体中的局部表面等离子体共振
等离子纳米材料中的局域表面等离子体共振(LSPR)可以在纳米维度上聚光,从而以数量级增强光强度。虽然表面等离子体共振是钙化半导体纳米晶体(NCs)中一个广泛研究的课题,但对碲多二元钙化物(MnCs)的研究却仍然遥遥无期,原因可能是无法获得相应的量子点(QDs)。在本报告中,我们展示了在 AgInTe2 QDs 的胶体合成过程中,质子特性向非质子特性的顺序转换。反应经过了几个中间产物,包括 AgInTe2/AgIn5Te8 核/壳 NCs、AgInTe2 微镜 (MRs)、AgInTe2 QDs 和 AgInTe2 量子点链 (QDC)。在这里,AgInTe2/AgIn5Te8 核/壳 NCs 和 AgInTe2 QDs 在 ~2000 纳米之前的可见光-近红外区域具有很强的 LSPR 吸收。我们认为,由于自由载流子(空穴)的存在,小尺寸量子约束和阳离子缺陷 AgInTe2 粒子是这两种情况下观察到 LSPR 模式的原因。我们开发基于 Te 的电浆 MnC QD 的工作可能会在半导体研究的纳米级光物质相互作用方面取得重大进展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ChemNanoMat
ChemNanoMat Energy-Energy Engineering and Power Technology
CiteScore
6.10
自引率
2.60%
发文量
236
期刊介绍: ChemNanoMat is a new journal published in close cooperation with the teams of Angewandte Chemie and Advanced Materials, and is the new sister journal to Chemistry—An Asian Journal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信