Convergence of Laplacian Eigenmaps and Its Rate for Submanifolds with Singularities

IF 0.6 3区 数学 Q4 COMPUTER SCIENCE, THEORY & METHODS
Masayuki Aino
{"title":"Convergence of Laplacian Eigenmaps and Its Rate for Submanifolds with Singularities","authors":"Masayuki Aino","doi":"10.1007/s00454-024-00667-5","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we give a spectral approximation result for the Laplacian on submanifolds of Euclidean spaces with singularities by the <span>\\(\\epsilon \\)</span>-neighborhood graph constructed from random points on the submanifold. Our convergence rate for the eigenvalue of the Laplacian is <span>\\(O\\left( \\left( \\log n/n\\right) ^{1/(m+2)}\\right) \\)</span>, where <i>m</i> and <i>n</i> denote the dimension of the manifold and the sample size, respectively.</p>","PeriodicalId":50574,"journal":{"name":"Discrete & Computational Geometry","volume":"131 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete & Computational Geometry","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00454-024-00667-5","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we give a spectral approximation result for the Laplacian on submanifolds of Euclidean spaces with singularities by the \(\epsilon \)-neighborhood graph constructed from random points on the submanifold. Our convergence rate for the eigenvalue of the Laplacian is \(O\left( \left( \log n/n\right) ^{1/(m+2)}\right) \), where m and n denote the dimension of the manifold and the sample size, respectively.

Abstract Image

拉普拉奇特征映射的收敛性及其对具有奇点的子实体的收敛率
在本文中,我们给出了欧几里得空间具有奇点的子曼形上的拉普拉斯函数的谱近似结果,即通过子曼形上的随机点构建的(\epsilon \)邻域图。我们对拉普拉斯函数特征值的收敛率是\(O\left( \left( \log n/n\right) ^{1/(m+2)}\right) \),其中m和n分别表示流形的维数和样本大小。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Discrete & Computational Geometry
Discrete & Computational Geometry 数学-计算机:理论方法
CiteScore
1.80
自引率
12.50%
发文量
99
审稿时长
6-12 weeks
期刊介绍: Discrete & Computational Geometry (DCG) is an international journal of mathematics and computer science, covering a broad range of topics in which geometry plays a fundamental role. It publishes papers on such topics as configurations and arrangements, spatial subdivision, packing, covering, and tiling, geometric complexity, polytopes, point location, geometric probability, geometric range searching, combinatorial and computational topology, probabilistic techniques in computational geometry, geometric graphs, geometry of numbers, and motion planning.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信