Power Mean Inequalities and Sums of Squares

Pub Date : 2024-06-23 DOI:10.1007/s00454-024-00652-y
Jose Acevedo, Grigoriy Blekherman
{"title":"Power Mean Inequalities and Sums of Squares","authors":"Jose Acevedo, Grigoriy Blekherman","doi":"10.1007/s00454-024-00652-y","DOIUrl":null,"url":null,"abstract":"<p>We study the limits of the cones of symmetric nonnegative polynomials and symmetric sums of squares, when expressed in power-mean or monomial-mean basis. These limits correspond to forms with stable expression in power-mean polynomials that are globally nonnegative (resp. sums of squares) regardless of the number of variables. We introduce partial symmetry reduction to describe the limit cone of symmetric sums of squares, and reprove a result of Blekherman and Riener (Discrete Comput Geom 65:1–36, 2020) that limits of symmetric nonnegative polynomials and sums of squares agree in degree 4. We use <i>tropicalization</i> of the dual cones, first considered in the context of comparing nonnegative polynomials and sums of squares in Blekherman et al. (Trans Am Math Soc 375(09):6281–6310, 2022), to show differences between cones of symmetric polynomials and sums of squares starting in degree 6, which disproves a conjecture of Blekherman and Riener (Discrete Comput Geom 65:1–36, 2020). For even symmetric nonnegative forms and sums of squares we show that the cones agree up to degree 8, and are different starting with degree 10. We also find, via tropicalization, explicit examples of symmetric forms that are nonnegative but not sums of squares in the limit.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00454-024-00652-y","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We study the limits of the cones of symmetric nonnegative polynomials and symmetric sums of squares, when expressed in power-mean or monomial-mean basis. These limits correspond to forms with stable expression in power-mean polynomials that are globally nonnegative (resp. sums of squares) regardless of the number of variables. We introduce partial symmetry reduction to describe the limit cone of symmetric sums of squares, and reprove a result of Blekherman and Riener (Discrete Comput Geom 65:1–36, 2020) that limits of symmetric nonnegative polynomials and sums of squares agree in degree 4. We use tropicalization of the dual cones, first considered in the context of comparing nonnegative polynomials and sums of squares in Blekherman et al. (Trans Am Math Soc 375(09):6281–6310, 2022), to show differences between cones of symmetric polynomials and sums of squares starting in degree 6, which disproves a conjecture of Blekherman and Riener (Discrete Comput Geom 65:1–36, 2020). For even symmetric nonnegative forms and sums of squares we show that the cones agree up to degree 8, and are different starting with degree 10. We also find, via tropicalization, explicit examples of symmetric forms that are nonnegative but not sums of squares in the limit.

Abstract Image

分享
查看原文
幂均值不等式和平方和
我们研究对称非负多项式和对称平方和在幂均或单项式均基础上表达时的圆锥极限。这些极限对应于在幂均多项式中具有稳定表达式的形式,无论变量的数量是多少,这些形式都是全局非负的(或平方和)。我们引入部分对称性还原来描述对称平方和的极限锥,并重新证明了 Blekherman 和 Riener 的一个结果(Discrete Comput Geom 65:1-36, 2020),即对称非负多项式和平方和的极限在 4 度上一致。我们利用对偶锥的热带化,首次在 Blekherman 等人 (Trans Am Math Soc 375(09):6281-6310, 2022) 中比较非负多项式和平方和时考虑了对偶锥的热带化,显示了对称多项式和平方和的锥从 6 度开始的差异,推翻了 Blekherman 和 Riener (Discrete Comput Geom 65:1-36, 2020) 的猜想。对于偶数对称非负数形式和平方和,我们证明在 8 度以内锥形是一致的,而从 10 度开始则不同。我们还通过热带化找到了对称形式的明确例子,这些对称形式在极限上是非负的,但不是平方和。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信