One-Dimensional Tensor Network Recovery

IF 1.5 2区 数学 Q2 MATHEMATICS, APPLIED
Ziang Chen, Jianfeng Lu, Anru Zhang
{"title":"One-Dimensional Tensor Network Recovery","authors":"Ziang Chen, Jianfeng Lu, Anru Zhang","doi":"10.1137/23m159888x","DOIUrl":null,"url":null,"abstract":"SIAM Journal on Matrix Analysis and Applications, Volume 45, Issue 3, Page 1217-1244, September 2024. <br/> Abstract. We study the recovery of the underlying graphs or permutations for tensors in the tensor ring or tensor train format. Our proposed algorithms compare the matricization ranks after down-sampling, whose complexity is [math] for [math]th-order tensors. We prove that our algorithms can almost surely recover the correct graph or permutation when tensor entries can be observed without noise. We further establish the robustness of our algorithms against observational noise. The theoretical results are validated by numerical experiments.","PeriodicalId":49538,"journal":{"name":"SIAM Journal on Matrix Analysis and Applications","volume":null,"pages":null},"PeriodicalIF":1.5000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIAM Journal on Matrix Analysis and Applications","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1137/23m159888x","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

SIAM Journal on Matrix Analysis and Applications, Volume 45, Issue 3, Page 1217-1244, September 2024.
Abstract. We study the recovery of the underlying graphs or permutations for tensors in the tensor ring or tensor train format. Our proposed algorithms compare the matricization ranks after down-sampling, whose complexity is [math] for [math]th-order tensors. We prove that our algorithms can almost surely recover the correct graph or permutation when tensor entries can be observed without noise. We further establish the robustness of our algorithms against observational noise. The theoretical results are validated by numerical experiments.
一维张量网络恢复
SIAM 矩阵分析与应用期刊》,第 45 卷第 3 期,第 1217-1244 页,2024 年 9 月。 摘要我们研究了张量环或张量列车格式中张量的底层图或排列的恢复。我们提出的算法比较了向下采样后的矩阵化等级,对于[math]阶张量,其复杂度为[math]。我们证明,当张量条目可以无噪声观测时,我们的算法几乎肯定能恢复正确的图或排列。我们进一步确定了我们的算法对观测噪声的鲁棒性。数值实验验证了理论结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.90
自引率
6.70%
发文量
61
审稿时长
6-12 weeks
期刊介绍: The SIAM Journal on Matrix Analysis and Applications contains research articles in matrix analysis and its applications and papers of interest to the numerical linear algebra community. Applications include such areas as signal processing, systems and control theory, statistics, Markov chains, and mathematical biology. Also contains papers that are of a theoretical nature but have a possible impact on applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信