{"title":"Existence and convergence of the length-preserving elastic flow of clamped curves","authors":"Fabian Rupp, Adrian Spener","doi":"10.1007/s00028-024-00988-1","DOIUrl":null,"url":null,"abstract":"<p>We study the evolution of curves with fixed length and clamped boundary conditions moving by the negative <span>\\(L^2\\)</span>-gradient flow of the elastic energy. For any initial curve lying merely in the energy space we show existence and parabolic smoothing of the solution. Applying previous results on long-time existence and proving a constrained Łojasiewicz–Simon gradient inequality we furthermore show convergence to a critical point as time tends to infinity.\n</p>","PeriodicalId":51083,"journal":{"name":"Journal of Evolution Equations","volume":"16 1","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Evolution Equations","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00028-024-00988-1","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
We study the evolution of curves with fixed length and clamped boundary conditions moving by the negative \(L^2\)-gradient flow of the elastic energy. For any initial curve lying merely in the energy space we show existence and parabolic smoothing of the solution. Applying previous results on long-time existence and proving a constrained Łojasiewicz–Simon gradient inequality we furthermore show convergence to a critical point as time tends to infinity.
期刊介绍:
The Journal of Evolution Equations (JEE) publishes high-quality, peer-reviewed papers on equations dealing with time dependent systems and ranging from abstract theory to concrete applications.
Research articles should contain new and important results. Survey articles on recent developments are also considered as important contributions to the field.
Particular topics covered by the journal are:
Linear and Nonlinear Semigroups
Parabolic and Hyperbolic Partial Differential Equations
Reaction Diffusion Equations
Deterministic and Stochastic Control Systems
Transport and Population Equations
Volterra Equations
Delay Equations
Stochastic Processes and Dirichlet Forms
Maximal Regularity and Functional Calculi
Asymptotics and Qualitative Theory of Linear and Nonlinear Evolution Equations
Evolution Equations in Mathematical Physics
Elliptic Operators