Some Classes of Frontals and Its Representation Formulas

IF 1.1 3区 数学 Q1 MATHEMATICS
T. A. Medina-Tejeda
{"title":"Some Classes of Frontals and Its Representation Formulas","authors":"T. A. Medina-Tejeda","doi":"10.1007/s00025-024-02221-4","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we characterize the extendibility of the normal curvature at singularities of frontals and give a representation formula for the class of frontals with this property. We introduce the relative normal curvature, which allows us to study the classical normal curvature, the asymptotic curves and the lines of curvature through singularities. Also, we provide representation formulas for wavefronts near all types of singularities and subclasses, such as wavefronts with extendable Gaussian curvature, bounded Gaussian curvature, and extendable principal curvature, among others.</p>","PeriodicalId":54490,"journal":{"name":"Results in Mathematics","volume":"293 1","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2024-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Results in Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00025-024-02221-4","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we characterize the extendibility of the normal curvature at singularities of frontals and give a representation formula for the class of frontals with this property. We introduce the relative normal curvature, which allows us to study the classical normal curvature, the asymptotic curves and the lines of curvature through singularities. Also, we provide representation formulas for wavefronts near all types of singularities and subclasses, such as wavefronts with extendable Gaussian curvature, bounded Gaussian curvature, and extendable principal curvature, among others.

Abstract Image

几类正面及其表示公式
在本文中,我们描述了正线奇点处法曲率的可延伸性,并给出了具有这一特性的正线类的表示公式。我们引入了相对法曲率,通过它我们可以研究经典法曲率、渐近曲线和通过奇点的曲率线。此外,我们还提供了所有类型奇点附近波面的表示公式和子类,如具有可扩展高斯曲率、有界高斯曲率和可扩展主曲率等的波面。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Results in Mathematics
Results in Mathematics 数学-数学
CiteScore
1.90
自引率
4.50%
发文量
198
审稿时长
6-12 weeks
期刊介绍: Results in Mathematics (RM) publishes mainly research papers in all fields of pure and applied mathematics. In addition, it publishes summaries of any mathematical field and surveys of any mathematical subject provided they are designed to advance some recent mathematical development.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信