NP-Completeness of the Combinatorial Distance Matrix Realisation Problem

David L. Fairbairn, George B. Mertzios, Norbert Peyerimhoff
{"title":"NP-Completeness of the Combinatorial Distance Matrix Realisation Problem","authors":"David L. Fairbairn, George B. Mertzios, Norbert Peyerimhoff","doi":"arxiv-2406.14729","DOIUrl":null,"url":null,"abstract":"The $k$-CombDMR problem is that of determining whether an $n \\times n$\ndistance matrix can be realised by $n$ vertices in some undirected graph with\n$n + k$ vertices. This problem has a simple solution in the case $k=0$. In this\npaper we show that this problem is polynomial time solvable for $k=1$ and\n$k=2$. Moreover, we provide algorithms to construct such graph realisations by\nsolving appropriate 2-SAT instances. In the case where $k \\geq 3$, this problem\nis NP-complete. We show this by a reduction of the $k$-colourability problem to\nthe $k$-CombDMR problem. Finally, we discuss the simpler polynomial time\nsolvable problem of tree realisability for a given distance matrix.","PeriodicalId":501216,"journal":{"name":"arXiv - CS - Discrete Mathematics","volume":"75 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Discrete Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2406.14729","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The $k$-CombDMR problem is that of determining whether an $n \times n$ distance matrix can be realised by $n$ vertices in some undirected graph with $n + k$ vertices. This problem has a simple solution in the case $k=0$. In this paper we show that this problem is polynomial time solvable for $k=1$ and $k=2$. Moreover, we provide algorithms to construct such graph realisations by solving appropriate 2-SAT instances. In the case where $k \geq 3$, this problem is NP-complete. We show this by a reduction of the $k$-colourability problem to the $k$-CombDMR problem. Finally, we discuss the simpler polynomial time solvable problem of tree realisability for a given distance matrix.
组合距离矩阵实现问题的 NP 完备性
$k$-CombDMR 问题是确定在具有 $n + k$ 个顶点的无向图中,$n 个顶点是否能实现 $n 次 n$ 的距离矩阵。这个问题在 $k=0$ 的情况下有一个简单的解。在本文中,我们证明了在 $k=1$ 和 $k=2$ 的情况下,这个问题是多项式时间可解的。此外,我们还提供了通过求解适当的 2-SAT 实例来构建这种图实现的算法。在 $k ≥geq 3$ 的情况下,这个问题是 NP-完全的。我们通过将 $k$-colourability 问题简化为 $k$-CombDMR 问题来证明这一点。最后,我们将讨论一个给定距离矩阵的树可变现性这一更简单的多项式可解问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信