The periodic structure of local consistency

Lorenzo Ciardo, Stanislav Živný
{"title":"The periodic structure of local consistency","authors":"Lorenzo Ciardo, Stanislav Živný","doi":"arxiv-2406.19685","DOIUrl":null,"url":null,"abstract":"We connect the mixing behaviour of random walks over a graph to the power of\nthe local-consistency algorithm for the solution of the corresponding\nconstraint satisfaction problem (CSP). We extend this connection to arbitrary\nCSPs and their promise variant. In this way, we establish a linear-level (and,\nthus, optimal) lower bound against the local-consistency algorithm applied to\nthe class of aperiodic promise CSPs. The proof is based on a combination of the\nprobabilistic method for random Erd\\H{o}s-R\\'enyi hypergraphs and a structural\nresult on the number of fibers (i.e., long chains of hyperedges) in sparse\nhypergraphs of large girth. As a corollary, we completely classify the power of\nlocal consistency for the approximate graph homomorphism problem by\nestablishing that, in the nontrivial cases, the problem has linear width.","PeriodicalId":501216,"journal":{"name":"arXiv - CS - Discrete Mathematics","volume":"46 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Discrete Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2406.19685","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We connect the mixing behaviour of random walks over a graph to the power of the local-consistency algorithm for the solution of the corresponding constraint satisfaction problem (CSP). We extend this connection to arbitrary CSPs and their promise variant. In this way, we establish a linear-level (and, thus, optimal) lower bound against the local-consistency algorithm applied to the class of aperiodic promise CSPs. The proof is based on a combination of the probabilistic method for random Erd\H{o}s-R\'enyi hypergraphs and a structural result on the number of fibers (i.e., long chains of hyperedges) in sparse hypergraphs of large girth. As a corollary, we completely classify the power of local consistency for the approximate graph homomorphism problem by establishing that, in the nontrivial cases, the problem has linear width.
局部一致性的周期结构
我们将图上随机行走的混合行为与解决相应约束满足问题(CSP)的局部一致性算法的能力联系起来。我们将这种联系扩展到任意 CSP 及其承诺变体。通过这种方法,我们针对应用于非周期性承诺 CSP 类的局部一致性算法建立了线性级(因此也是最优的)下限。证明基于随机 Erd\H{o}s-R\'enyi 超图的概率方法和大周长稀疏超图中纤维(即超桥的长链)数量的结构性结果。作为推论,我们通过证明在非微观情况下,近似图同态问题具有线性宽度,对近似图同态问题的局部一致性能力进行了完全分类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信