Further Connectivity Results on Plane Spanning Path Reconfiguration

Valentino Boucard, Guilherme D. da Fonseca, Bastien Rivier
{"title":"Further Connectivity Results on Plane Spanning Path Reconfiguration","authors":"Valentino Boucard, Guilherme D. da Fonseca, Bastien Rivier","doi":"arxiv-2407.00244","DOIUrl":null,"url":null,"abstract":"Given a finite set $ S $ of points, we consider the following reconfiguration\ngraph. The vertices are the plane spanning paths of $ S $ and there is an edge\nbetween two vertices if the two corresponding paths differ by two edges (one\nremoved, one added). Since 2007, this graph is conjectured to be connected but\nno proof has been found. In this paper, we prove several results to support the\nconjecture. Mainly, we show that if all but one point of $ S $ are in convex\nposition, then the graph is connected with diameter at most $ 2 | S | $ and\nthat for $ | S | \\geq 3 $ every connected component has at least $ 3 $\nvertices.","PeriodicalId":501216,"journal":{"name":"arXiv - CS - Discrete Mathematics","volume":"729 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Discrete Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2407.00244","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Given a finite set $ S $ of points, we consider the following reconfiguration graph. The vertices are the plane spanning paths of $ S $ and there is an edge between two vertices if the two corresponding paths differ by two edges (one removed, one added). Since 2007, this graph is conjectured to be connected but no proof has been found. In this paper, we prove several results to support the conjecture. Mainly, we show that if all but one point of $ S $ are in convex position, then the graph is connected with diameter at most $ 2 | S | $ and that for $ | S | \geq 3 $ every connected component has at least $ 3 $ vertices.
平面跨路径重构的进一步连接结果
给定一个有限的点集合 $ S $,我们考虑下面的重组图。顶点是 $ S $ 的平面跨越路径,如果两条对应路径相差两条边(一条删除,一条添加),则两个顶点之间有一条边。自 2007 年以来,人们一直猜测这个图是连通的,但没有找到证明。在本文中,我们证明了支持该猜想的几个结果。主要是,我们证明了如果除了一个点之外,$ S $ 的所有点都在凸点上,那么这个图是连通的,直径最多为 $ 2 | S | $,并且对于 $ | S |\geq 3 $,每个连通的部分至少有 $ 3 $ 个顶点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信