Change of numeraire for weak martingale transport

Mathias Beiglböck, Gudmund Pammer, Lorenz Riess
{"title":"Change of numeraire for weak martingale transport","authors":"Mathias Beiglböck, Gudmund Pammer, Lorenz Riess","doi":"arxiv-2406.07523","DOIUrl":null,"url":null,"abstract":"Change of numeraire is a classical tool in mathematical finance.\nCampi-Laachir-Martini established its applicability to martingale optimal\ntransport. We note that the results of Campi-Laachir-Martini extend to the case\nof weak martingale transport. We apply this to shadow couplings, continuous\ntime martingale transport problems in the framework of Huesmann-Trevisan and in\nparticular to establish the correspondence between stretched Brownian motion\nwith its geometric counterpart. Note: We emphasize that we learned about the geometric stretched Brownian\nmotion gSBM (defined in PDE terms) in a presentation of Loeper \\cite{Lo23}\nbefore our work on this topic started. We noticed that a change of numeraire\ntransformation in the spirit of \\cite{CaLaMa14} allows for an alternative\nviewpoint in the weak optimal transport framework. We make our work public\nfollowing the publication of Backhoff-Loeper-Obloj's work \\cite{BaLoOb24} on\narxiv.org. The article \\cite{BaLoOb24} derives gSBM using PDE techniques as\nwell as through an independent probabilistic approach which is close to the one\nwe give in the present article.","PeriodicalId":501084,"journal":{"name":"arXiv - QuantFin - Mathematical Finance","volume":"34 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - QuantFin - Mathematical Finance","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2406.07523","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Change of numeraire is a classical tool in mathematical finance. Campi-Laachir-Martini established its applicability to martingale optimal transport. We note that the results of Campi-Laachir-Martini extend to the case of weak martingale transport. We apply this to shadow couplings, continuous time martingale transport problems in the framework of Huesmann-Trevisan and in particular to establish the correspondence between stretched Brownian motion with its geometric counterpart. Note: We emphasize that we learned about the geometric stretched Brownian motion gSBM (defined in PDE terms) in a presentation of Loeper \cite{Lo23} before our work on this topic started. We noticed that a change of numeraire transformation in the spirit of \cite{CaLaMa14} allows for an alternative viewpoint in the weak optimal transport framework. We make our work public following the publication of Backhoff-Loeper-Obloj's work \cite{BaLoOb24} on arxiv.org. The article \cite{BaLoOb24} derives gSBM using PDE techniques as well as through an independent probabilistic approach which is close to the one we give in the present article.
弱马丁格尔输运的数字变化
坎皮-拉齐尔-马尔蒂尼(Campi-Laachir-Martini)将其应用于马丁格尔最优传输。我们注意到,Campi-Laachir-Martini 的结果扩展到了弱马氏输运的情况。我们将其应用于影子耦合、Huesmann-Trevisan 框架下的连续时间马氏输运问题,特别是建立了拉伸布朗运动与其几何对应物之间的对应关系。注:我们要强调的是,在我们开始本课题的研究之前,我们在 Loeper \cite{Lo23}的演讲中了解到了几何拉伸布朗运动 gSBM(用 PDE 术语定义)。我们注意到,本着 \cite{CaLaMa14}的精神,改变数值变换可以在弱最优传输框架中找到另一种视角。在 Backhoff-Loeper-Obloj 的研究成果发表之后,我们公开了我们的工作。这篇文章利用 PDE 技术以及一种独立的概率方法推导出了 gSBM,这种方法与我们在本文中给出的方法很接近。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信