Note on a Theoretical Justification for Approximations of Arithmetic Forwards

Álvaro Romaniega
{"title":"Note on a Theoretical Justification for Approximations of Arithmetic Forwards","authors":"Álvaro Romaniega","doi":"arxiv-2406.09488","DOIUrl":null,"url":null,"abstract":"This brief note explores the theoretical justification for some\napproximations of arithmetic forwards ($F_a$) with weighted averages of\novernight (ON) forwards ($F_k$). The central equation presented in this\nanalysis is: \\begin{equation*}\nF_a(0;T_s,T_e)=\\frac{1}{\\tau(T_s,T_e)}\\sum_{k=1}^K \\tau_k \\mathcal{A}_k F_k\\,,\n\\end{equation*} with $\\mathcal{A}_k$ being explicit model-dependent quantities\nthat, under certain market scenarios, are close to one. We will present\ncomputationally cheaper methods that approximate $F_a$, i.e., we will define\nsome $\\{\\tilde{\\mathcal{A}}_k\\}_{k=1}^K$ such that \\begin{equation*}\nF_a(0;T_s,T_e)\\approx \\frac{1}{\\tau(T_s,T_e)}\\sum_{k=1}^K \\tilde{\\mathcal{A}}_k\n\\tau_k F_k\\,. \\end{equation*} We also demonstrate that one of these forms can\nbe closely aligned with an approximation suggested by Katsumi Takada in his\nwork on the valuation of arithmetic averages of Fed Funds rates.","PeriodicalId":501084,"journal":{"name":"arXiv - QuantFin - Mathematical Finance","volume":"38 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - QuantFin - Mathematical Finance","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2406.09488","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This brief note explores the theoretical justification for some approximations of arithmetic forwards ($F_a$) with weighted averages of overnight (ON) forwards ($F_k$). The central equation presented in this analysis is: \begin{equation*} F_a(0;T_s,T_e)=\frac{1}{\tau(T_s,T_e)}\sum_{k=1}^K \tau_k \mathcal{A}_k F_k\,, \end{equation*} with $\mathcal{A}_k$ being explicit model-dependent quantities that, under certain market scenarios, are close to one. We will present computationally cheaper methods that approximate $F_a$, i.e., we will define some $\{\tilde{\mathcal{A}}_k\}_{k=1}^K$ such that \begin{equation*} F_a(0;T_s,T_e)\approx \frac{1}{\tau(T_s,T_e)}\sum_{k=1}^K \tilde{\mathcal{A}}_k \tau_k F_k\,. \end{equation*} We also demonstrate that one of these forms can be closely aligned with an approximation suggested by Katsumi Takada in his work on the valuation of arithmetic averages of Fed Funds rates.
关于算术前向近似值理论依据的说明
本简讯探讨用隔夜(ON)远期($F_k$)的加权平均数来近似算术远期($F_a$)的一些理论依据。本分析中提出的中心方程是\F_a(0;T_s,T_e)=\frac{1}{tau(T_s,T_e)}\sum_{k=1}^K \tau_k \mathcal{A}_k F_k\,, \end{equation*} $\mathcal{A}_k$ 是明确的依赖于模型的量,在某些市场情况下接近于 1。我们将提出计算成本更低的近似 $F_a$ 的方法,也就是说、我们将定义一个 $\{tilde{\mathcal{A}}_{k\}_{k=1}^K$ ,使得 \begin{equation*}F_a(0;T_s,T_e)\approx \frac{1}{tau(T_s,T_e)}\sum_{k=1}^K \tilde{\mathcal{A}}_k\tau_k F_k\,.\end{equation*}我们还证明,其中一种形式可以与高田胜美(Katsumi Takada)在其关于联邦基金利率算术平均估值的工作中提出的近似值非常接近。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信