Pricing VIX options under the Heston-Hawkes stochastic volatility model

Oriol Zamora Font
{"title":"Pricing VIX options under the Heston-Hawkes stochastic volatility model","authors":"Oriol Zamora Font","doi":"arxiv-2406.13508","DOIUrl":null,"url":null,"abstract":"We derive a semi-analytical pricing formula for European VIX call options\nunder the Heston-Hawkes stochastic volatility model introduced in\narXiv:2210.15343. This arbitrage-free model incorporates the volatility\nclustering feature by adding an independent compound Hawkes process to the\nHeston volatility. Using the Markov property of the exponential Hawkes an\nexplicit expression of $\\text{VIX}^2$ is derived as a linear combination of the\nvariance and the Hawkes intensity. We apply qualitative ODE theory to study the\nexistence of some generalized Riccati ODEs. Thereafter, we compute the joint\ncharacteristic function of the variance and the Hawkes intensity exploiting the\nexponential affine structure of the model. Finally, the pricing formula is\nobtained by applying standard Fourier techniques.","PeriodicalId":501084,"journal":{"name":"arXiv - QuantFin - Mathematical Finance","volume":"16 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - QuantFin - Mathematical Finance","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2406.13508","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We derive a semi-analytical pricing formula for European VIX call options under the Heston-Hawkes stochastic volatility model introduced in arXiv:2210.15343. This arbitrage-free model incorporates the volatility clustering feature by adding an independent compound Hawkes process to the Heston volatility. Using the Markov property of the exponential Hawkes an explicit expression of $\text{VIX}^2$ is derived as a linear combination of the variance and the Hawkes intensity. We apply qualitative ODE theory to study the existence of some generalized Riccati ODEs. Thereafter, we compute the joint characteristic function of the variance and the Hawkes intensity exploiting the exponential affine structure of the model. Finally, the pricing formula is obtained by applying standard Fourier techniques.
根据赫斯顿-霍克斯随机波动率模型为 VIX 期权定价
我们根据《哈斯顿-霍克斯随机波动率模型》(arXiv:2210.15343)中介绍的哈斯顿-霍克斯随机波动率模型推导出了欧洲 VIX 看涨期权的半解析定价公式。这个无套利模型通过在赫斯顿波动率上添加一个独立的复合霍克斯过程,将波动率集群特征纳入其中。利用指数霍克斯的马尔可夫特性,我们得出了$\text{VIX}^2$的显式表达,它是方差和霍克斯强度的线性组合。我们运用定性 ODE 理论研究了一些广义 Riccati ODE 的存在性。之后,我们利用模型的指数仿射结构计算方差和霍克斯强度的联合特征函数。最后,应用标准傅立叶技术得出定价公式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信