Root stacks and periodic decompositions

Pub Date : 2024-06-15 DOI:10.1007/s00229-024-01574-y
A. Bodzenta, W. Donovan
{"title":"Root stacks and periodic decompositions","authors":"A. Bodzenta, W. Donovan","doi":"10.1007/s00229-024-01574-y","DOIUrl":null,"url":null,"abstract":"<p>For an effective Cartier divisor <i>D</i> on a scheme <i>X</i> we may form an <span>\\({n}^{\\text {th}}\\)</span> root stack. Its derived category is known to have a semiorthogonal decomposition with components given by <i>D</i> and <i>X</i>. We show that this decomposition is <span>\\(2n\\)</span>-periodic. For <span>\\(n=2\\)</span> this gives a purely triangulated proof of the existence of a known spherical functor, namely the pushforward along the embedding of <i>D</i>. For <span>\\(n &gt; 2\\)</span> we find a higher spherical functor in the sense of recent work of Dyckerhoff et al. (<i>N</i>-spherical functors and categorification of Euler’s continuants. arXiv:2306.13350, 2023). We use a realization of the root stack construction as a variation of GIT, which may be of independent interest.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00229-024-01574-y","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

For an effective Cartier divisor D on a scheme X we may form an \({n}^{\text {th}}\) root stack. Its derived category is known to have a semiorthogonal decomposition with components given by D and X. We show that this decomposition is \(2n\)-periodic. For \(n=2\) this gives a purely triangulated proof of the existence of a known spherical functor, namely the pushforward along the embedding of D. For \(n > 2\) we find a higher spherical functor in the sense of recent work of Dyckerhoff et al. (N-spherical functors and categorification of Euler’s continuants. arXiv:2306.13350, 2023). We use a realization of the root stack construction as a variation of GIT, which may be of independent interest.

Abstract Image

分享
查看原文
根堆栈和周期分解
对于方案 X 上的有效卡蒂埃除数 D,我们可以形成一个 \({n}^{text {th}}\) 根堆栈。我们证明这个分解是 \(2n\)-periodic 的。对于(n=2),这给出了一个已知球形函子存在的纯三角证明,即沿着 D 的嵌入的推演。对于(n >2),我们找到了 Dyckerhoff 等人最近工作意义上的更高球形函子(N-球形函子和欧拉连续体的分类。arXiv:2306.13350, 2023)。我们将根栈构造的实现作为 GIT 的一种变体,这可能会引起独立的兴趣。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信