Supervised prediction of production patterns using machine learning algorithms

IF 1.1 2区 文学 0 LANGUAGE & LINGUISTICS
Jungyeon Kim
{"title":"Supervised prediction of production patterns using machine learning algorithms","authors":"Jungyeon Kim","doi":"10.1515/lingvan-2024-0034","DOIUrl":null,"url":null,"abstract":"When an English word ending in a stop is adapted to Korean, a vowel is variably inserted after the final stop: some words always take the epenthetic vowel, and some never do, while some vary between these alternatives. Although there are different linguistic factors that possibly affect this insertion, it is not easy to determine which pattern will be chosen if a new word comes into the borrowing language. This study conducted classification data analyses of production patterns based on machine learning algorithms including support vector machines and random forests. These two classifiers show similar results where vowel tenseness is the best predictor among all the possible predictors. This indicates that vowel tenseness is most influential in classifying the patterns (no vowel insertion, optional vowel insertion, or vowel insertion). Results suggest that while vowel tenseness remains significant, other factors such as stop voicing and stop place also hold some importance, albeit to a lesser degree. The contribution of this study is that it provides insight into the factors that regulate vowel insertion, and these findings support the need for a behavioral experiment to see if the current results can make right predictions with respect to the behavior of nonce items.","PeriodicalId":55960,"journal":{"name":"Linguistics Vanguard","volume":"25 1","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2024-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Linguistics Vanguard","FirstCategoryId":"98","ListUrlMain":"https://doi.org/10.1515/lingvan-2024-0034","RegionNum":2,"RegionCategory":"文学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"0","JCRName":"LANGUAGE & LINGUISTICS","Score":null,"Total":0}
引用次数: 0

Abstract

When an English word ending in a stop is adapted to Korean, a vowel is variably inserted after the final stop: some words always take the epenthetic vowel, and some never do, while some vary between these alternatives. Although there are different linguistic factors that possibly affect this insertion, it is not easy to determine which pattern will be chosen if a new word comes into the borrowing language. This study conducted classification data analyses of production patterns based on machine learning algorithms including support vector machines and random forests. These two classifiers show similar results where vowel tenseness is the best predictor among all the possible predictors. This indicates that vowel tenseness is most influential in classifying the patterns (no vowel insertion, optional vowel insertion, or vowel insertion). Results suggest that while vowel tenseness remains significant, other factors such as stop voicing and stop place also hold some importance, albeit to a lesser degree. The contribution of this study is that it provides insight into the factors that regulate vowel insertion, and these findings support the need for a behavioral experiment to see if the current results can make right predictions with respect to the behavior of nonce items.
使用机器学习算法对生产模式进行监督预测
当一个以停顿结尾的英语单词被改编成韩语时,会在最后的停顿后插入一个元音:有些单词总是使用表元音,有些则从不使用,而有些则在这两种选择之间变化。虽然有不同的语言因素可能会影响这种插入,但要确定借用语中出现新词时会选择哪种模式并不容易。本研究基于机器学习算法(包括支持向量机和随机森林)对生产模式进行了分类数据分析。这两种分类器显示出相似的结果,在所有可能的预测因子中,元音张力是最好的预测因子。这表明元音张力对模式分类(无元音插入、可选元音插入或元音插入)的影响最大。结果表明,虽然元音张力仍然很重要,但其他因素(如停顿发声和停顿位置)也有一定的重要性,尽管程度较轻。本研究的贡献在于它提供了对调节元音插入的因素的洞察力,这些发现支持了进行行为实验的必要性,以了解目前的结果是否能对非 cce 项目的行为做出正确的预测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.00
自引率
18.20%
发文量
105
期刊介绍: Linguistics Vanguard is a new channel for high quality articles and innovative approaches in all major fields of linguistics. This multimodal journal is published solely online and provides an accessible platform supporting both traditional and new kinds of publications. Linguistics Vanguard seeks to publish concise and up-to-date reports on the state of the art in linguistics as well as cutting-edge research papers. With its topical breadth of coverage and anticipated quick rate of production, it is one of the leading platforms for scientific exchange in linguistics. Its broad theoretical range, international scope, and diversity of article formats engage students and scholars alike. All topics within linguistics are welcome. The journal especially encourages submissions taking advantage of its new multimodal platform designed to integrate interactive content, including audio and video, images, maps, software code, raw data, and any other media that enhances the traditional written word. The novel platform and concise article format allows for rapid turnaround of submissions. Full peer review assures quality and enables authors to receive appropriate credit for their work. The journal publishes general submissions as well as special collections. Ideas for special collections may be submitted to the editors for consideration.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信