LETA: Tooth Alignment Prediction Based on Dual-branch Latent Encoding

IF 6.5
Zefeng Shi;Zijie Meng;Ruizhe Chen;Yang Feng;Zeyu Zhao;Jin Hao;Bing Fang;Zuozhu Liu;Youyi Zheng
{"title":"LETA: Tooth Alignment Prediction Based on Dual-branch Latent Encoding","authors":"Zefeng Shi;Zijie Meng;Ruizhe Chen;Yang Feng;Zeyu Zhao;Jin Hao;Bing Fang;Zuozhu Liu;Youyi Zheng","doi":"10.1109/TVCG.2024.3413857","DOIUrl":null,"url":null,"abstract":"Accurately determining the clinical positions for each tooth is essential in orthodontics, while most existing solutions heavily rely on inefficient manual design. In this paper, we present the LETA, a dual-branch <underline>L</u>atent <underline>E</u>ncoding based 3D <underline>T</u>ooth <underline>A</u>lignment. Our system takes as input the segmented individual 3D tooth meshes in the Intra-oral Scanner (IOS) dental surfaces, and automatically predicts the proper 3D pose transformation for each tooth. LETA includes three components: an Encoder that learns a latent code of dental pointcloud, a Projector that transforms the latent code of misaligned teeth to predicted aligned ones, and a Solver to estimate the transformation between different dental latent codes. A key novelty of LETA is that we extract the features from the ground truth (GT) aligned teeth to guide network learning during training. To effectively learn tooth features, our Encoder employs an improved point-wise convolutional operation and an attention-based network to extract local shape features and global context features respectively. Extensive experimental results on a large-scale dataset with 9,868 IOS surfaces demonstrate that LETA can achieve state-of-the-art performance. A further clinical applicability study reveals that our method can reduce orthodontists’ workload over 60% compared to starting tooth alignment from scratch, demonstrating the strong potential of deep learning for future digital dentistry.","PeriodicalId":94035,"journal":{"name":"IEEE transactions on visualization and computer graphics","volume":"31 9","pages":"4805-4820"},"PeriodicalIF":6.5000,"publicationDate":"2024-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on visualization and computer graphics","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10566714/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Accurately determining the clinical positions for each tooth is essential in orthodontics, while most existing solutions heavily rely on inefficient manual design. In this paper, we present the LETA, a dual-branch Latent Encoding based 3D Tooth Alignment. Our system takes as input the segmented individual 3D tooth meshes in the Intra-oral Scanner (IOS) dental surfaces, and automatically predicts the proper 3D pose transformation for each tooth. LETA includes three components: an Encoder that learns a latent code of dental pointcloud, a Projector that transforms the latent code of misaligned teeth to predicted aligned ones, and a Solver to estimate the transformation between different dental latent codes. A key novelty of LETA is that we extract the features from the ground truth (GT) aligned teeth to guide network learning during training. To effectively learn tooth features, our Encoder employs an improved point-wise convolutional operation and an attention-based network to extract local shape features and global context features respectively. Extensive experimental results on a large-scale dataset with 9,868 IOS surfaces demonstrate that LETA can achieve state-of-the-art performance. A further clinical applicability study reveals that our method can reduce orthodontists’ workload over 60% compared to starting tooth alignment from scratch, demonstrating the strong potential of deep learning for future digital dentistry.
LETA: 基于双分支潜编码的牙齿排列预测
准确确定每颗牙齿的临床位置在正畸中至关重要,而大多数现有的解决方案严重依赖于低效的人工设计。在本文中,我们提出了LETA,一种基于双分支隐编码的三维牙齿对齐方法。我们的系统以口腔内扫描仪(IOS)牙齿表面上分割的单个3D牙齿网格作为输入,并自动预测每个牙齿的正确3D姿态转换。LETA包括三个部分:学习牙齿点云潜在代码的编码器,将牙齿不对齐的潜在代码转换为预测对齐的投影仪,以及估计不同牙齿潜在代码之间转换的求解器。LETA的一个关键新颖之处在于我们从ground truth (GT)对齐的齿中提取特征来指导训练过程中的网络学习。为了有效地学习牙齿特征,我们的编码器采用改进的逐点卷积运算和基于注意力的网络分别提取局部形状特征和全局上下文特征。在9868个IOS表面的大规模数据集上进行的大量实验结果表明,LETA可以达到最先进的性能。一项进一步的临床适用性研究表明,与从头开始牙齿对齐相比,我们的方法可以减少正畸医生60%以上的工作量,这表明深度学习在未来数字牙科的强大潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信