Chunwei Zhang, Asma A. Mousavi, Sami F. Masri, Gholamreza Gholipour
{"title":"The State-of-the-Art on Time-Frequency Signal Processing Techniques for High-Resolution Representation of Nonlinear Systems in Engineering","authors":"Chunwei Zhang, Asma A. Mousavi, Sami F. Masri, Gholamreza Gholipour","doi":"10.1007/s11831-024-10153-z","DOIUrl":null,"url":null,"abstract":"<p>One of the serious issues of traditional signal processing techniques in analyzing the responses of real-life structures is related to the presentation of fundamental information of nonlinear, non-stationary, and noisy signals with closely-spaced frequencies. To overcome this difficulty, numerous studies have been carried out recently to explore proper time-frequency signal processing techniques to efficiently present high-resolution representations for nonlinear characteristics of analyzed signals. Despite existing extensive reviews on vibration-based signal processing techniques in time and frequency domains for Structural Health Monitoring purposes, there exists no study in categorizing the signal processing techniques based on the feature extraction with time-frequency representations. To fill this gap, this paper presents a comprehensive state-of-the-art review on the applications of time-frequency signal processing techniques for damage detection, localization, and quantification in various structural systems. The progressive trend of time-frequency analysis methods is reviewed by summarizing their advantages and disadvantages, as well as recommendations of combination methods to be utilized for different applications in various complicated structural and mechanical systems.</p>","PeriodicalId":55473,"journal":{"name":"Archives of Computational Methods in Engineering","volume":"3 1","pages":""},"PeriodicalIF":9.7000,"publicationDate":"2024-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archives of Computational Methods in Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s11831-024-10153-z","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
One of the serious issues of traditional signal processing techniques in analyzing the responses of real-life structures is related to the presentation of fundamental information of nonlinear, non-stationary, and noisy signals with closely-spaced frequencies. To overcome this difficulty, numerous studies have been carried out recently to explore proper time-frequency signal processing techniques to efficiently present high-resolution representations for nonlinear characteristics of analyzed signals. Despite existing extensive reviews on vibration-based signal processing techniques in time and frequency domains for Structural Health Monitoring purposes, there exists no study in categorizing the signal processing techniques based on the feature extraction with time-frequency representations. To fill this gap, this paper presents a comprehensive state-of-the-art review on the applications of time-frequency signal processing techniques for damage detection, localization, and quantification in various structural systems. The progressive trend of time-frequency analysis methods is reviewed by summarizing their advantages and disadvantages, as well as recommendations of combination methods to be utilized for different applications in various complicated structural and mechanical systems.
期刊介绍:
Archives of Computational Methods in Engineering
Aim and Scope:
Archives of Computational Methods in Engineering serves as an active forum for disseminating research and advanced practices in computational engineering, particularly focusing on mechanics and related fields. The journal emphasizes extended state-of-the-art reviews in selected areas, a unique feature of its publication.
Review Format:
Reviews published in the journal offer:
A survey of current literature
Critical exposition of topics in their full complexity
By organizing the information in this manner, readers can quickly grasp the focus, coverage, and unique features of the Archives of Computational Methods in Engineering.