New Approach to Preventing External Overheating of High-Speed Aircraft

Q3 Engineering
V. F. Formalev, S. A. Kolesnik, B. A. Garibyan, O. A. Pashkov, E. A. Pegachkova
{"title":"New Approach to Preventing External Overheating of High-Speed Aircraft","authors":"V. F. Formalev, S. A. Kolesnik, B. A. Garibyan, O. A. Pashkov, E. A. Pegachkova","doi":"10.3103/s1068798x24700904","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Abstract</h3><p>External overheating of high-speed aircraft may be prevented by means of composites with significant longitudinal anisotropy. (The longitudinal thermal conductivity is two orders of magnitude greater than the transverse thermal conductivity.) In this approach, the heat fluxes that result from aerodynamic heating are channeled within the anisotropic composites from the hottest region (the front critical point) to the tail of the truncated cone. As a result, the vicinity of the front critical point is cooled and the tail of the cone is heated, with considerable decrease in the associated heat fluxes.</p>","PeriodicalId":35875,"journal":{"name":"Russian Engineering Research","volume":"7 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Russian Engineering Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3103/s1068798x24700904","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

Abstract

External overheating of high-speed aircraft may be prevented by means of composites with significant longitudinal anisotropy. (The longitudinal thermal conductivity is two orders of magnitude greater than the transverse thermal conductivity.) In this approach, the heat fluxes that result from aerodynamic heating are channeled within the anisotropic composites from the hottest region (the front critical point) to the tail of the truncated cone. As a result, the vicinity of the front critical point is cooled and the tail of the cone is heated, with considerable decrease in the associated heat fluxes.

Abstract Image

防止高速飞机外部过热的新方法
摘要 利用具有显著纵向各向异性的复合材料可以防止高速飞机的外部过热。(纵向热导率比横向热导率大两个数量级)。在这种方法中,气动加热产生的热通量会在各向异性复合材料内从最热区域(前临界点)流向截顶锥的尾部。因此,前临界点附近被冷却,锥体尾部被加热,相关的热通量大大减少。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Russian Engineering Research
Russian Engineering Research Engineering-Industrial and Manufacturing Engineering
CiteScore
1.20
自引率
0.00%
发文量
226
期刊介绍: Russian Engineering Research is a journal that publishes articles on mechanical and production engineering. The journal covers the development of different branches of mechanical engineering, new technologies, and tools for machine and materials design. Emphasis is on operations research and production-line layout, industrial robots and manipulators, quality control and process engineering, kinematic analysis of machine assemblies, and computerized integrated manufacturing systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信