Small Hurewicz and Menger sets which have large continuous images

Piotr Szewczak, Tomasz Weiss, Lyubomyr Zdomskyy
{"title":"Small Hurewicz and Menger sets which have large continuous images","authors":"Piotr Szewczak, Tomasz Weiss, Lyubomyr Zdomskyy","doi":"arxiv-2406.12609","DOIUrl":null,"url":null,"abstract":"We provide new techniques to construct sets of reals without perfect subsets\nand with the Hurewicz or Menger covering properties. In particular, we show\nthat if the Continuum Hypothesis holds, then there are such sets which can be\nmapped continuously onto the Cantor space. These results allow to separate the\nproperties of Menger and $\\mathsf{S}_1(\\Gamma,\\mathrm{O})$ in the realm of sets\nof reals without perfect subsets and solve a problem of Nowik and Tsaban\nconcerning perfectly meager subsets in the transitive sense. We present also\nsome other applications of the mentioned above methods.","PeriodicalId":501314,"journal":{"name":"arXiv - MATH - General Topology","volume":"43 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - General Topology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2406.12609","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We provide new techniques to construct sets of reals without perfect subsets and with the Hurewicz or Menger covering properties. In particular, we show that if the Continuum Hypothesis holds, then there are such sets which can be mapped continuously onto the Cantor space. These results allow to separate the properties of Menger and $\mathsf{S}_1(\Gamma,\mathrm{O})$ in the realm of sets of reals without perfect subsets and solve a problem of Nowik and Tsaban concerning perfectly meager subsets in the transitive sense. We present also some other applications of the mentioned above methods.
具有大连续图像的小胡列维奇和门格尔集合
我们提供了新的技术来构造没有完美子集且具有胡勒维茨或门格尔覆盖性质的有数集。我们特别指出,如果连续假说成立,那么就有这样的集合可以连续地映射到康托空间。这些结果允许在没有完全子集的实数集合领域中分离出门格尔和 $\mathsf{S}_1(\Gamma,\mathrm{O})$ 的性质,并解决了诺维克和察班克关于反式意义上的完全微弱子集的问题。我们还介绍了上述方法的一些其他应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信