Yunxiang Zhang, Jianning Zhu, Yang Sun, Yibo Sun, Li Zou, Xinhua Yang
{"title":"Ultrasonic bonding with variable amplitude fuzzy control based on force signals for Polymethyl Methacrylate","authors":"Yunxiang Zhang, Jianning Zhu, Yang Sun, Yibo Sun, Li Zou, Xinhua Yang","doi":"10.1177/07316844241263187","DOIUrl":null,"url":null,"abstract":"Ultrasonic bonding is an emerging technology in the field of micro-assembly. Traditional ultrasonic bonding processes are controlled by time, pressure, or electrical energy, but higher precision is required for interface fusion control. In this paper, a variable amplitude ultrasonic bonding method based on fuzzy control is proposed. Two fuzzy controllers are designed by the fuzzy control algorithm with dynamic and static force signals as inputs and ultrasonic amplitude as output. In the early stage of bonding, the initial melting of the contact surface is accelerated, and the generation of overflow defects is inhibited by the realization of a large amplitude. In the middle and late stages of bonding, the whole interface fusion is achieved with smaller amplitudes to weaken the bubble defect. The bonding experiment between the micro connecting tube and substrate of polymethyl methacrylate (PMMA) is carried out to investigate the fusion of interface. The effects of different amplitude parameters on air bubbles and overflow defects are analyzed. Results indicate that the suppression of overflow and air bubbles is obvious, and the overflow ratio can be reduced to 2%. The stability and accuracy of interface fusion are improved.","PeriodicalId":16943,"journal":{"name":"Journal of Reinforced Plastics and Composites","volume":"33 1","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2024-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Reinforced Plastics and Composites","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1177/07316844241263187","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, COMPOSITES","Score":null,"Total":0}
引用次数: 0
Abstract
Ultrasonic bonding is an emerging technology in the field of micro-assembly. Traditional ultrasonic bonding processes are controlled by time, pressure, or electrical energy, but higher precision is required for interface fusion control. In this paper, a variable amplitude ultrasonic bonding method based on fuzzy control is proposed. Two fuzzy controllers are designed by the fuzzy control algorithm with dynamic and static force signals as inputs and ultrasonic amplitude as output. In the early stage of bonding, the initial melting of the contact surface is accelerated, and the generation of overflow defects is inhibited by the realization of a large amplitude. In the middle and late stages of bonding, the whole interface fusion is achieved with smaller amplitudes to weaken the bubble defect. The bonding experiment between the micro connecting tube and substrate of polymethyl methacrylate (PMMA) is carried out to investigate the fusion of interface. The effects of different amplitude parameters on air bubbles and overflow defects are analyzed. Results indicate that the suppression of overflow and air bubbles is obvious, and the overflow ratio can be reduced to 2%. The stability and accuracy of interface fusion are improved.
期刊介绍:
The Journal of Reinforced Plastics and Composites is a fully peer-reviewed international journal that publishes original research and review articles on a broad range of today''s reinforced plastics and composites including areas in:
Constituent materials: matrix materials, reinforcements and coatings.
Properties and performance: The results of testing, predictive models, and in-service evaluation of a wide range of materials are published, providing the reader with extensive properties data for reference.
Analysis and design: Frequency reports on these subjects inform the reader of analytical techniques, design processes and the many design options available in materials composition.
Processing and fabrication: There is increased interest among materials engineers in cost-effective processing.
Applications: Reports on new materials R&D are often related to the service requirements of specific application areas, such as automotive, marine, construction and aviation.
Reports on special topics are regularly included such as recycling, environmental effects, novel materials, computer-aided design, predictive modelling, and "smart" composite materials.
"The articles in the Journal of Reinforced Plastics and Products are must reading for engineers in industry and for researchers working on leading edge problems" Professor Emeritus Stephen W Tsai National Sun Yat-sen University, Taiwan
This journal is a member of the Committee on Publication Ethics (COPE).