{"title":"Robust Picture Fuzzy Regression Functions Approach Based on M-Estimators for the Forecasting Problem","authors":"Eren Bas, Erol Egrioglu","doi":"10.1007/s10614-024-10647-9","DOIUrl":null,"url":null,"abstract":"<p>A picture fuzzy regression function approach is a fuzzy inference system method that uses as input the lagged variables of a time series and the positive, negative and neutral membership values obtained by picture fuzzy clustering method. In a picture fuzzy regression functions method, the parameter estimation is also obtained by ordinary least squares method. Since the picture fuzzy regression functions approach is based on the ordinary least squares method, the forecasting performance decreases when there are outliers in the time series. In this study, a picture fuzzy regression function approach that can be used even in the presence of outliers in a time series is proposed. In the proposed method, the parameter estimation for the picture fuzzy regression function approach is performed based on robust regression with Bisquare, Cauchy, Fair, Huber, Logistic, Talwar and Welsch functions. The forecasting performance of the proposed method is evaluated on the time series of the Spanish and the London stock exchange time series. The forecasting performance of these time series are evaluated separately for both the original and outlier cases. Besides, the proposed method is compared with several different fuzzy regression function approaches and a neural network method. Based on the results of the analysis, it is concluded that the proposed method outperforms the other methods even when the time series contains both original and outliers.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":"23 1","pages":""},"PeriodicalIF":16.4000,"publicationDate":"2024-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"96","ListUrlMain":"https://doi.org/10.1007/s10614-024-10647-9","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
A picture fuzzy regression function approach is a fuzzy inference system method that uses as input the lagged variables of a time series and the positive, negative and neutral membership values obtained by picture fuzzy clustering method. In a picture fuzzy regression functions method, the parameter estimation is also obtained by ordinary least squares method. Since the picture fuzzy regression functions approach is based on the ordinary least squares method, the forecasting performance decreases when there are outliers in the time series. In this study, a picture fuzzy regression function approach that can be used even in the presence of outliers in a time series is proposed. In the proposed method, the parameter estimation for the picture fuzzy regression function approach is performed based on robust regression with Bisquare, Cauchy, Fair, Huber, Logistic, Talwar and Welsch functions. The forecasting performance of the proposed method is evaluated on the time series of the Spanish and the London stock exchange time series. The forecasting performance of these time series are evaluated separately for both the original and outlier cases. Besides, the proposed method is compared with several different fuzzy regression function approaches and a neural network method. Based on the results of the analysis, it is concluded that the proposed method outperforms the other methods even when the time series contains both original and outliers.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.