{"title":"Higher-Order Iterative Learning Control Algorithms for Linear Systems","authors":"P. V. Pakshin, J. P. Emelianova, M. A. Emelianov","doi":"10.1134/s0965542524700064","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Abstract</h3><p>Iterative learning control (ILC) algorithms appeared in connection with the problems of increasing the accuracy of performing repetitive operations by robots. They use information from previous repetitions to adjust the control signal on the current repetition. Most often, information from the previous repetition only is used. ILC algorithms that use information from several previous iterations are called higher-order algorithms. Recently, interest in these algorithms has increased in the literature in connection with robotic additive manufacturing problems. However, in addition to the fact that these algorithms have been little studied, there are conflicting estimates regarding their properties. This paper proposes new higher-order ILC algorithms for linear discrete and differential systems. The idea of these algorithms is based on an analogy with multi-step methods in optimization theory, in particular, with the heavy ball method. An example is given that confirms the possibility to accelerate convergence of the learning error when using such algorithms.</p>","PeriodicalId":55230,"journal":{"name":"Computational Mathematics and Mathematical Physics","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2024-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Mathematics and Mathematical Physics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1134/s0965542524700064","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
Iterative learning control (ILC) algorithms appeared in connection with the problems of increasing the accuracy of performing repetitive operations by robots. They use information from previous repetitions to adjust the control signal on the current repetition. Most often, information from the previous repetition only is used. ILC algorithms that use information from several previous iterations are called higher-order algorithms. Recently, interest in these algorithms has increased in the literature in connection with robotic additive manufacturing problems. However, in addition to the fact that these algorithms have been little studied, there are conflicting estimates regarding their properties. This paper proposes new higher-order ILC algorithms for linear discrete and differential systems. The idea of these algorithms is based on an analogy with multi-step methods in optimization theory, in particular, with the heavy ball method. An example is given that confirms the possibility to accelerate convergence of the learning error when using such algorithms.
期刊介绍:
Computational Mathematics and Mathematical Physics is a monthly journal published in collaboration with the Russian Academy of Sciences. The journal includes reviews and original papers on computational mathematics, computational methods of mathematical physics, informatics, and other mathematical sciences. The journal welcomes reviews and original articles from all countries in the English or Russian language.