The Gradient Projection Method for a Supporting Function on the Unit Sphere and Its Applications

Pub Date : 2024-06-07 DOI:10.1134/s096554252470009x
M. V. Balashov, A. A. Tremba
{"title":"The Gradient Projection Method for a Supporting Function on the Unit Sphere and Its Applications","authors":"M. V. Balashov, A. A. Tremba","doi":"10.1134/s096554252470009x","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Abstract</h3><p>We consider minimization of the supporting function of a convex compact set on the unit sphere. In essence, this is the problem of projecting zero onto a compact convex set. We consider sufficient conditions for solving this problem with a linear rate using a first order algorithm—the gradient projection method with a fixed step-size and with Armijo’s step-size. We consider some applications for problems with set-valued mappings. The mappings in the work basically are given through the set-valued integral of a set-valued mapping with convex and compact images or as the Minkowski sum of finite number of convex compact sets, e.g., ellipsoids. Unlike another solution ways, e.g., with approximation in a certain sense of the mapping, the considered algorithm much weaker depends on the dimension of the space and other parameters of the problem. It also allows efficient error estimation. Numerical experiments confirm the effectiveness of the considered approach.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1134/s096554252470009x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We consider minimization of the supporting function of a convex compact set on the unit sphere. In essence, this is the problem of projecting zero onto a compact convex set. We consider sufficient conditions for solving this problem with a linear rate using a first order algorithm—the gradient projection method with a fixed step-size and with Armijo’s step-size. We consider some applications for problems with set-valued mappings. The mappings in the work basically are given through the set-valued integral of a set-valued mapping with convex and compact images or as the Minkowski sum of finite number of convex compact sets, e.g., ellipsoids. Unlike another solution ways, e.g., with approximation in a certain sense of the mapping, the considered algorithm much weaker depends on the dimension of the space and other parameters of the problem. It also allows efficient error estimation. Numerical experiments confirm the effectiveness of the considered approach.

Abstract Image

分享
查看原文
单位球面上支撑函数的梯度投影法及其应用
摘要 我们考虑的是单位球面上一个凸紧凑集的支撑函数的最小化问题。实质上,这是一个将零投影到紧凑凸集上的问题。我们考虑了使用一阶算法--具有固定步长和 Armijo 步长的梯度投影法--以线性速率求解该问题的充分条件。我们还考虑了集值映射问题的一些应用。工作中的映射基本上是通过具有凸紧凑图像的集值映射的集值积分给出的,或作为有限数量凸紧凑集(如椭圆)的闵科夫斯基和给出的。与另一种求解方法(如在一定意义上对映射进行逼近)不同,所考虑的算法对空间维度和问题的其他参数的依赖性要弱得多。它还能有效地估计误差。数值实验证实了所考虑方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信