Study and Optimization of N-Particle Numerical Statistical Algorithm for Solving the Boltzmann Equation

Pub Date : 2024-06-13 DOI:10.1134/s0965542524700246
G. Z. Lotova, G. A. Mikhailov, S. V. Rogasinsky
{"title":"Study and Optimization of N-Particle Numerical Statistical Algorithm for Solving the Boltzmann Equation","authors":"G. Z. Lotova, G. A. Mikhailov, S. V. Rogasinsky","doi":"10.1134/s0965542524700246","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Abstract</h3><p>The main goal of this work is to check the hypothesis that the well-known <i>N</i>-particle statistical algorithm yields a solution estimate for the nonlinear Boltzmann equation with an <span>\\(O(1{\\text{/}}N)\\)</span> error. For this purpose, practically important optimal relations between <span>\\(N\\)</span> and the number <span>\\(n\\)</span> of sample estimate values are determined. Numerical results for a problem with a known solution confirm that the formulated estimates and conclusions are satisfactory.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1134/s0965542524700246","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The main goal of this work is to check the hypothesis that the well-known N-particle statistical algorithm yields a solution estimate for the nonlinear Boltzmann equation with an \(O(1{\text{/}}N)\) error. For this purpose, practically important optimal relations between \(N\) and the number \(n\) of sample estimate values are determined. Numerical results for a problem with a known solution confirm that the formulated estimates and conclusions are satisfactory.

分享
查看原文
求解玻尔兹曼方程的 N 粒子数值统计算法的研究与优化
摘要 这项工作的主要目的是检验一个假设,即众所周知的N粒子统计算法可以得到误差为\(O(1{text{/}}N)\)的非线性玻尔兹曼方程的解估计值。为此,确定了 \(N\) 与样本估计值数量 \(n\) 之间的重要最优关系。一个已知解问题的数值结果证实了所提出的估计和结论是令人满意的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信