Comparison of homogeneous anisotropic hardening models in the case of the direct redrawing of a DP600 steel

N Gautam, S Yoon, F Barlat, S Thuillier
{"title":"Comparison of homogeneous anisotropic hardening models in the case of the direct redrawing of a DP600 steel","authors":"N Gautam, S Yoon, F Barlat, S Thuillier","doi":"10.1088/1757-899x/1307/1/012029","DOIUrl":null,"url":null,"abstract":"The use of DP600, an advanced high strength steel, has gained significant attention in automotive industry, especially for complex structures that require multi-step forming operations, leading to non-linear strain path changes. From a numerical modelling perspective, the use of advanced constitutive equations has enabled a precise representation of a large range of behaviors, encompassing reverse and orthogonal strain path changes. Within this context, this study is dedicated to the numerical simulation of a two-step deep drawing process based on distortional plasticity. Two models developed within the Homogeneous Anisotropic Hardening (HAH) framework are considered. This study presents a comparison of the model predictions, calibrated over the same experimental database, in terms of their ability to predict the strain path changes and mechanical behavior of the material during the forming process. Several outputs like the punch load evolution and the strain field are compared with experimental data.","PeriodicalId":14483,"journal":{"name":"IOP Conference Series: Materials Science and Engineering","volume":"40 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IOP Conference Series: Materials Science and Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/1757-899x/1307/1/012029","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The use of DP600, an advanced high strength steel, has gained significant attention in automotive industry, especially for complex structures that require multi-step forming operations, leading to non-linear strain path changes. From a numerical modelling perspective, the use of advanced constitutive equations has enabled a precise representation of a large range of behaviors, encompassing reverse and orthogonal strain path changes. Within this context, this study is dedicated to the numerical simulation of a two-step deep drawing process based on distortional plasticity. Two models developed within the Homogeneous Anisotropic Hardening (HAH) framework are considered. This study presents a comparison of the model predictions, calibrated over the same experimental database, in terms of their ability to predict the strain path changes and mechanical behavior of the material during the forming process. Several outputs like the punch load evolution and the strain field are compared with experimental data.
DP600 钢直接重拉情况下均质各向异性硬化模型的比较
DP600 是一种先进的高强度钢材,在汽车行业的使用已获得极大关注,特别是对于需要多步成型操作的复杂结构,会导致非线性应变路径变化。从数值建模的角度来看,使用先进的构成方程可以精确地表示各种行为,包括反向和正交应变路径变化。在此背景下,本研究致力于对基于变形塑性的两步深拉工艺进行数值模拟。研究考虑了在均质各向异性硬化(HAH)框架内开发的两个模型。本研究对模型的预测结果进行了比较,并根据相同的实验数据库进行了校准,比较了模型预测成形过程中材料应变路径变化和机械行为的能力。冲压载荷演变和应变场等几个输出结果与实验数据进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信