On the Structure of Axisymmetric Helical Solutions to the Incompressible Navier–Stokes System

Pub Date : 2024-06-13 DOI:10.1134/s0965542524700209
V. A. Galkin
{"title":"On the Structure of Axisymmetric Helical Solutions to the Incompressible Navier–Stokes System","authors":"V. A. Galkin","doi":"10.1134/s0965542524700209","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Abstract</h3><p>A class of exact solutions to the Navier–Stokes equations for an axisymmetric rotational incompressible flow is obtained. Invariant manifolds of flows that are axisymmetric about a given axis in three-dimensional coordinate space are found, and the structure of solutions is described. It is established that typical invariant regions of such flows are figures of rotation homeomorphic to the torus, which form a topological stratification structure, for example, in a ball, cylinder, and general complexes made up of such figures. The results extend to similar solutions of the system of MHD equations and Maxwell’s electrodynamic equations, which have analogous properties in <span>\\({{\\mathbb{R}}_{3}}\\)</span>. Examples are given of axisymmetric vorticity vector fields and topological stratifications they generate on manifolds in <span>\\({{\\mathbb{R}}_{3}}\\)</span> that are invariant under the dynamical systems specified by these fields.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1134/s0965542524700209","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

A class of exact solutions to the Navier–Stokes equations for an axisymmetric rotational incompressible flow is obtained. Invariant manifolds of flows that are axisymmetric about a given axis in three-dimensional coordinate space are found, and the structure of solutions is described. It is established that typical invariant regions of such flows are figures of rotation homeomorphic to the torus, which form a topological stratification structure, for example, in a ball, cylinder, and general complexes made up of such figures. The results extend to similar solutions of the system of MHD equations and Maxwell’s electrodynamic equations, which have analogous properties in \({{\mathbb{R}}_{3}}\). Examples are given of axisymmetric vorticity vector fields and topological stratifications they generate on manifolds in \({{\mathbb{R}}_{3}}\) that are invariant under the dynamical systems specified by these fields.

Abstract Image

分享
查看原文
论不可压缩纳维-斯托克斯系统轴对称螺旋解的结构
摘要 获得了轴对称旋转不可压缩流的纳维-斯托克斯方程的一类精确解。找到了三维坐标空间中关于给定轴的轴对称流动的不变流形,并描述了解的结构。结果表明,这类流动的典型不变区域是与环同构的旋转图形,它们形成了拓扑分层结构,例如在球、圆柱体和由这类图形组成的一般复合物中。这些结果扩展到了 MHD 方程系统和麦克斯韦电动力学方程的类似解,它们在 \({{\mathbb{R}}_{3}}\) 中具有类似的性质。举例说明了轴对称涡度矢量场及其在 \({{\mathbb{R}}_{3}} 流形上产生的拓扑分层,这些分层在这些场指定的动力系统下是不变的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信