Yogesh Kumar, P. R. Mishra, Susanta Samanta, Atul Gaur
{"title":"A systematic construction approach for all $$4\\times 4$$ involutory MDS matrices","authors":"Yogesh Kumar, P. R. Mishra, Susanta Samanta, Atul Gaur","doi":"10.1007/s12190-024-02142-z","DOIUrl":null,"url":null,"abstract":"<p>Maximum distance separable (MDS) matrices play a crucial role not only in coding theory but also in the design of block ciphers and hash functions. Of particular interest are involutory MDS matrices, which facilitate the use of a single circuit for both encryption and decryption in hardware implementations. In this article, we present several characterizations of involutory MDS matrices of even order. Additionally, we introduce a new matrix form for obtaining all involutory MDS matrices of even order and compare it with other matrix forms available in the literature. We then propose a technique to systematically construct all <span>\\(4 \\times 4\\)</span> involutory MDS matrices over a finite field <span>\\(\\mathbb {F}_{2^m}\\)</span>. This method significantly reduces the search space by focusing on involutory MDS class representative matrices, leading to the generation of all such matrices within a substantially smaller set compared to considering all <span>\\(4 \\times 4\\)</span> involutory matrices. Specifically, our approach involves searching for these representative matrices within a set of cardinality <span>\\((2^m-1)^5\\)</span>. Through this method, we provide an explicit enumeration of the total number of <span>\\(4 \\times 4\\)</span> involutory MDS matrices over <span>\\(\\mathbb {F}_{2^m}\\)</span> for <span>\\(m=3,4,\\ldots ,8\\)</span>.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s12190-024-02142-z","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
Abstract
Maximum distance separable (MDS) matrices play a crucial role not only in coding theory but also in the design of block ciphers and hash functions. Of particular interest are involutory MDS matrices, which facilitate the use of a single circuit for both encryption and decryption in hardware implementations. In this article, we present several characterizations of involutory MDS matrices of even order. Additionally, we introduce a new matrix form for obtaining all involutory MDS matrices of even order and compare it with other matrix forms available in the literature. We then propose a technique to systematically construct all \(4 \times 4\) involutory MDS matrices over a finite field \(\mathbb {F}_{2^m}\). This method significantly reduces the search space by focusing on involutory MDS class representative matrices, leading to the generation of all such matrices within a substantially smaller set compared to considering all \(4 \times 4\) involutory matrices. Specifically, our approach involves searching for these representative matrices within a set of cardinality \((2^m-1)^5\). Through this method, we provide an explicit enumeration of the total number of \(4 \times 4\) involutory MDS matrices over \(\mathbb {F}_{2^m}\) for \(m=3,4,\ldots ,8\).