A systematic construction approach for all $$4\times 4$$ involutory MDS matrices

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Yogesh Kumar, P. R. Mishra, Susanta Samanta, Atul Gaur
{"title":"A systematic construction approach for all $$4\\times 4$$ involutory MDS matrices","authors":"Yogesh Kumar, P. R. Mishra, Susanta Samanta, Atul Gaur","doi":"10.1007/s12190-024-02142-z","DOIUrl":null,"url":null,"abstract":"<p>Maximum distance separable (MDS) matrices play a crucial role not only in coding theory but also in the design of block ciphers and hash functions. Of particular interest are involutory MDS matrices, which facilitate the use of a single circuit for both encryption and decryption in hardware implementations. In this article, we present several characterizations of involutory MDS matrices of even order. Additionally, we introduce a new matrix form for obtaining all involutory MDS matrices of even order and compare it with other matrix forms available in the literature. We then propose a technique to systematically construct all <span>\\(4 \\times 4\\)</span> involutory MDS matrices over a finite field <span>\\(\\mathbb {F}_{2^m}\\)</span>. This method significantly reduces the search space by focusing on involutory MDS class representative matrices, leading to the generation of all such matrices within a substantially smaller set compared to considering all <span>\\(4 \\times 4\\)</span> involutory matrices. Specifically, our approach involves searching for these representative matrices within a set of cardinality <span>\\((2^m-1)^5\\)</span>. Through this method, we provide an explicit enumeration of the total number of <span>\\(4 \\times 4\\)</span> involutory MDS matrices over <span>\\(\\mathbb {F}_{2^m}\\)</span> for <span>\\(m=3,4,\\ldots ,8\\)</span>.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s12190-024-02142-z","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

Maximum distance separable (MDS) matrices play a crucial role not only in coding theory but also in the design of block ciphers and hash functions. Of particular interest are involutory MDS matrices, which facilitate the use of a single circuit for both encryption and decryption in hardware implementations. In this article, we present several characterizations of involutory MDS matrices of even order. Additionally, we introduce a new matrix form for obtaining all involutory MDS matrices of even order and compare it with other matrix forms available in the literature. We then propose a technique to systematically construct all \(4 \times 4\) involutory MDS matrices over a finite field \(\mathbb {F}_{2^m}\). This method significantly reduces the search space by focusing on involutory MDS class representative matrices, leading to the generation of all such matrices within a substantially smaller set compared to considering all \(4 \times 4\) involutory matrices. Specifically, our approach involves searching for these representative matrices within a set of cardinality \((2^m-1)^5\). Through this method, we provide an explicit enumeration of the total number of \(4 \times 4\) involutory MDS matrices over \(\mathbb {F}_{2^m}\) for \(m=3,4,\ldots ,8\).

Abstract Image

所有 $$4\times 4$$ 非重叠 MDS 矩阵的系统构建方法
最大距离可分(MDS)矩阵不仅在编码理论中,而且在块密码和哈希函数的设计中都起着至关重要的作用。我们尤其关注非法定 MDS 矩阵,因为它有助于在硬件实现中使用单一电路进行加密和解密。在本文中,我们介绍了偶数阶非法定 MDS 矩阵的几个特征。此外,我们还介绍了一种新的矩阵形式,用于获取所有偶数阶的非法定 MDS 矩阵,并将其与文献中的其他矩阵形式进行了比较。然后,我们提出了一种在有限域 \(\mathbb {F}_{2^m}\) 上系统地构造所有 \(4 次 4\) 非正则 MDS 矩阵的技术。与考虑所有(4 次 4)非法定矩阵相比,这种方法专注于非法定 MDS 类代表矩阵,从而在更小的集合内生成所有此类矩阵,从而大大缩小了搜索空间。具体来说,我们的方法是在一个 cardinality \((2^m-1)^5\) 的集合中寻找这些代表性矩阵。通过这种方法,我们可以明确地枚举出在\(m=3,4,ldots ,8\)的\(\mathbb {F}_{2^m}\)上的\(4乘以4\)非法定MDS矩阵的总数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信