Learning High-dimensional Latent Variable Models via Doubly Stochastic Optimisation by Unadjusted Langevin

Motonori Oka, Yunxiao Chen, Irini Mounstaki
{"title":"Learning High-dimensional Latent Variable Models via Doubly Stochastic Optimisation by Unadjusted Langevin","authors":"Motonori Oka, Yunxiao Chen, Irini Mounstaki","doi":"arxiv-2406.09311","DOIUrl":null,"url":null,"abstract":"Latent variable models are widely used in social and behavioural sciences,\nsuch as education, psychology, and political science. In recent years,\nhigh-dimensional latent variable models have become increasingly common for\nanalysing large and complex data. Estimating high-dimensional latent variable\nmodels using marginal maximum likelihood is computationally demanding due to\nthe complexity of integrals involved. To address this challenge, stochastic\noptimisation, which combines stochastic approximation and sampling techniques,\nhas been shown to be effective. This method iterates between two steps -- (1)\nsampling the latent variables from their posterior distribution based on the\ncurrent parameter estimate, and (2) updating the fixed parameters using an\napproximate stochastic gradient constructed from the latent variable samples.\nIn this paper, we propose a computationally more efficient stochastic\noptimisation algorithm. This improvement is achieved through the use of a\nminibatch of observations when sampling latent variables and constructing\nstochastic gradients, and an unadjusted Langevin sampler that utilises the\ngradient of the negative complete-data log-likelihood to sample latent\nvariables. Theoretical results are established for the proposed algorithm,\nshowing that the iterative parameter update converges to the marginal maximum\nlikelihood estimate as the number of iterations goes to infinity. Furthermore,\nthe proposed algorithm is shown to scale well to high-dimensional settings\nthrough simulation studies and a personality test application with 30,000\nrespondents, 300 items, and 30 latent dimensions.","PeriodicalId":501215,"journal":{"name":"arXiv - STAT - Computation","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - STAT - Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2406.09311","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Latent variable models are widely used in social and behavioural sciences, such as education, psychology, and political science. In recent years, high-dimensional latent variable models have become increasingly common for analysing large and complex data. Estimating high-dimensional latent variable models using marginal maximum likelihood is computationally demanding due to the complexity of integrals involved. To address this challenge, stochastic optimisation, which combines stochastic approximation and sampling techniques, has been shown to be effective. This method iterates between two steps -- (1) sampling the latent variables from their posterior distribution based on the current parameter estimate, and (2) updating the fixed parameters using an approximate stochastic gradient constructed from the latent variable samples. In this paper, we propose a computationally more efficient stochastic optimisation algorithm. This improvement is achieved through the use of a minibatch of observations when sampling latent variables and constructing stochastic gradients, and an unadjusted Langevin sampler that utilises the gradient of the negative complete-data log-likelihood to sample latent variables. Theoretical results are established for the proposed algorithm, showing that the iterative parameter update converges to the marginal maximum likelihood estimate as the number of iterations goes to infinity. Furthermore, the proposed algorithm is shown to scale well to high-dimensional settings through simulation studies and a personality test application with 30,000 respondents, 300 items, and 30 latent dimensions.
通过未调整朗文双重随机优化学习高维潜变量模型
潜变量模型广泛应用于社会和行为科学领域,如教育学、心理学和政治学。近年来,高维潜变量模型在分析大量复杂数据时变得越来越常见。由于涉及复杂的积分,使用边际最大似然估计高维潜变量模型的计算要求很高。为了应对这一挑战,结合了随机逼近和抽样技术的随机优化方法被证明是有效的。这种方法在两个步骤之间进行迭代--(1)根据当前的参数估计,从潜在变量的后验分布中抽取样本;(2)使用从潜在变量样本构建的近似随机梯度更新固定参数。我们提出了一种计算效率更高的随机优化算法。这种改进是通过在抽取潜变量样本和构建随机梯度时使用非批量观测值,以及利用负完整数据对数似然梯度抽取潜变量样本的未调整朗之文抽样器实现的。所提出算法的理论结果表明,当迭代次数达到无穷大时,参数迭代更新会收敛到边际最大似然估计值。此外,通过模拟研究和具有 30,000 名应答者、300 个项目和 30 个潜在维度的人格测试应用,证明了所提出的算法能够很好地扩展到高维环境。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信