A generalized relaxed block positive-semidefinite splitting preconditioner for generalized saddle point linear system

Jun Li, Lingsheng Meng, Shu-Xin Miao
{"title":"A generalized relaxed block positive-semidefinite splitting preconditioner for generalized saddle point linear system","authors":"Jun Li, Lingsheng Meng, Shu-Xin Miao","doi":"10.1007/s13226-024-00615-2","DOIUrl":null,"url":null,"abstract":"<p>In this paper, based on the block positive-semidefinite splitting (BPS) preconditioner studied recently and the relaxation technique, a generalized relaxed BPS (GRBPS) preconditioner is proposed for generalized saddle point linear system. Spectral properties of the GRBPS preconditioned matrix are analyzed in details. Theoretical results show that the eigenvalues of the preconditioned matrix are clustered at only two points when the iteration parameters are close to zero. Finally, a numerical example is provided to verify the efficiency of the GRBPS preconditioner.</p>","PeriodicalId":501427,"journal":{"name":"Indian Journal of Pure and Applied Mathematics","volume":"9 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Indian Journal of Pure and Applied Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s13226-024-00615-2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, based on the block positive-semidefinite splitting (BPS) preconditioner studied recently and the relaxation technique, a generalized relaxed BPS (GRBPS) preconditioner is proposed for generalized saddle point linear system. Spectral properties of the GRBPS preconditioned matrix are analyzed in details. Theoretical results show that the eigenvalues of the preconditioned matrix are clustered at only two points when the iteration parameters are close to zero. Finally, a numerical example is provided to verify the efficiency of the GRBPS preconditioner.

Abstract Image

广义鞍点线性系统的广义松弛块正半inite分裂预处理器
本文基于最近研究的分块正半inite分裂(BPS)预处理器和松弛技术,针对广义鞍点线性系统提出了一种广义松弛 BPS(GRBPS)预处理器。详细分析了 GRBPS 预处理矩阵的谱特性。理论结果表明,当迭代参数接近于零时,预处理矩阵的特征值只集中在两个点上。最后,提供了一个数值示例来验证 GRBPS 预处理的效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信