Existence, stability, and numerical simulations of a fractal-fractional hepatitis B virus model

Meroua Medjoudja, Mohammed El hadi Mezabia, Fawaz K. Alalhareth, Ahmed Boudaoui
{"title":"Existence, stability, and numerical simulations of a fractal-fractional hepatitis B virus model","authors":"Meroua Medjoudja, Mohammed El hadi Mezabia, Fawaz K. Alalhareth, Ahmed Boudaoui","doi":"10.1007/s13226-024-00612-5","DOIUrl":null,"url":null,"abstract":"<p>This paper uses a new fractal-fractional operator with a power law-type kernel in the Riemann-Liouville sense to formulate the new fractal-fractional model of hepatitis B virus (HBV) transmission with asymptomatic carriers. The existence of the model’s solutions is demonstrated using Schuder’s fixed point theorem. The Banach fixed point theorem is utilized to prove the uniqueness of the solutions. Solutions’ stability behaviors in the Ulam concept are also discussed. Further, using the newly created numerical scheme based on Newton’s polynomial, the new numerical scheme for HBV is created. Numerical simulations show the accuracy of the approximate solutions of the new numerical method, along with the clear effect of the fractal dimension and fractional order on the spread of the HBV disease.</p>","PeriodicalId":501427,"journal":{"name":"Indian Journal of Pure and Applied Mathematics","volume":"206 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Indian Journal of Pure and Applied Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s13226-024-00612-5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper uses a new fractal-fractional operator with a power law-type kernel in the Riemann-Liouville sense to formulate the new fractal-fractional model of hepatitis B virus (HBV) transmission with asymptomatic carriers. The existence of the model’s solutions is demonstrated using Schuder’s fixed point theorem. The Banach fixed point theorem is utilized to prove the uniqueness of the solutions. Solutions’ stability behaviors in the Ulam concept are also discussed. Further, using the newly created numerical scheme based on Newton’s polynomial, the new numerical scheme for HBV is created. Numerical simulations show the accuracy of the approximate solutions of the new numerical method, along with the clear effect of the fractal dimension and fractional order on the spread of the HBV disease.

Abstract Image

分形-分形乙型肝炎病毒模型的存在性、稳定性和数值模拟
本文利用黎曼-刘维尔意义上具有幂律型核的新分形-分形算子,提出了无症状携带者乙型肝炎病毒(HBV)传播的新分形-分形模型。利用 Schuder 定点定理证明了模型解的存在性。利用巴拿赫定点定理证明了解的唯一性。同时还讨论了乌拉姆概念中解的稳定性行为。此外,利用新创建的基于牛顿多项式的数值方案,创建了新的 HBV 数值方案。数值模拟显示了新数值方法近似解的准确性,以及分形维数和分形阶数对 HBV 疾病传播的明显影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信