Compatibility conditions allowing mono phasic oscillating solutions for the multidimensional incompressible Euler system

Mekki Houbad
{"title":"Compatibility conditions allowing mono phasic oscillating solutions for the multidimensional incompressible Euler system","authors":"Mekki Houbad","doi":"10.1007/s13226-024-00630-3","DOIUrl":null,"url":null,"abstract":"<p>We are interested in Cauchy’s problem formed by a multidimensional incompressible Euler’s system and large amplitude oscillating initial data <span>\\(w(x,\\varphi (x)/\\varepsilon )\\in \\mathcal {C}^1(\\Omega _r^0,\\mathbb {R}^n)\\)</span>, with <span>\\(\\varepsilon \\in ]0,1]\\)</span> is a parameter and <span>\\(\\Omega ^0_r\\subset \\mathbb {R}^n\\)</span> the ball of centre zero and radius <i>r</i>. We determine the necessary and sufficient conditions that guarantee a solution on a domain of <span>\\(\\mathbb {R}^+\\times \\mathbb {R}^n\\)</span> independent of <span>\\(\\varepsilon \\)</span> for the Cauchy’s problem previously mentioned. These conditions are a system of nonlinear partial differential equations uniform in <span>\\(\\varepsilon \\)</span> involving the couple <span>\\((\\varphi ,w)\\)</span>, we show the existence of this couple, and we discuss its propagation over time.</p>","PeriodicalId":501427,"journal":{"name":"Indian Journal of Pure and Applied Mathematics","volume":"41 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Indian Journal of Pure and Applied Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s13226-024-00630-3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We are interested in Cauchy’s problem formed by a multidimensional incompressible Euler’s system and large amplitude oscillating initial data \(w(x,\varphi (x)/\varepsilon )\in \mathcal {C}^1(\Omega _r^0,\mathbb {R}^n)\), with \(\varepsilon \in ]0,1]\) is a parameter and \(\Omega ^0_r\subset \mathbb {R}^n\) the ball of centre zero and radius r. We determine the necessary and sufficient conditions that guarantee a solution on a domain of \(\mathbb {R}^+\times \mathbb {R}^n\) independent of \(\varepsilon \) for the Cauchy’s problem previously mentioned. These conditions are a system of nonlinear partial differential equations uniform in \(\varepsilon \) involving the couple \((\varphi ,w)\), we show the existence of this couple, and we discuss its propagation over time.

多维不可压缩欧拉系统单相振荡解的兼容条件
我们感兴趣的是由多维不可压缩欧拉系统和大振幅振荡初始数据形成的 Cauchy 问题(w(x、\在 \mathcal {C}^1(\Omega _r^0,\mathbb {R}^n)\) 中,\(\varepsilon \in ]0,1]\) 是一个参数,\(\Omega ^0_r\subset \mathbb {R}^n\) 是中心为零半径为 r 的球。我们为前面提到的考奇问题确定了必要条件和充分条件,这些条件保证了在(\mathbb {R}^+\times\mathbb {R}^n\)域上有一个独立于(\varepsilon \)的解。这些条件是一个在 \(\varepsilon \)中均匀的非线性偏微分方程系,其中涉及偶数 \((\varphi,w)\),我们证明了这个偶数的存在,并讨论了它随时间的传播。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信