Assessment of Atmospheric Ozone from Reanalysis and Ground-based Measurements in the Baikal Region

IF 1.4 4区 地球科学 Q4 METEOROLOGY & ATMOSPHERIC SCIENCES
A. M. Smetanina, S. A. Gromov, V. A. Obolkin, T. V. Khodzher, O. I. Khuriganova
{"title":"Assessment of Atmospheric Ozone from Reanalysis and Ground-based Measurements in the Baikal Region","authors":"A. M. Smetanina, S. A. Gromov, V. A. Obolkin, T. V. Khodzher, O. I. Khuriganova","doi":"10.3103/s1068373924040113","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Abstract</h3><p>The machine learning model used to predict ozone concentrations at the Listvyanka monitoring station in the Baikal region is described. The model was trained and verified using automatic ground-based gas analyzer ozone measurements. Random forest and boosting machine learning models were used. According to the ERA5 reanalysis, the mean absolute error of ozone values exceeds 16 ppb, and the mean percentage error is 80%. The respective errors in the ozone values calculated using machine learning models are 6.7 ppb and 29%. The results of forecasting are the most sensitive to the season, air temperature, and vegetation. The ozone values for 2017–2022 were simulated and analyzed using the trained model and reanalysis data.</p>","PeriodicalId":49581,"journal":{"name":"Russian Meteorology and Hydrology","volume":"128 1","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2024-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Russian Meteorology and Hydrology","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.3103/s1068373924040113","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

The machine learning model used to predict ozone concentrations at the Listvyanka monitoring station in the Baikal region is described. The model was trained and verified using automatic ground-based gas analyzer ozone measurements. Random forest and boosting machine learning models were used. According to the ERA5 reanalysis, the mean absolute error of ozone values exceeds 16 ppb, and the mean percentage error is 80%. The respective errors in the ozone values calculated using machine learning models are 6.7 ppb and 29%. The results of forecasting are the most sensitive to the season, air temperature, and vegetation. The ozone values for 2017–2022 were simulated and analyzed using the trained model and reanalysis data.

Abstract Image

贝加尔地区大气臭氧再分析和地面测量评估
摘要 介绍了用于预测贝加尔湖地区利斯特维扬卡监测站臭氧浓度的机器学习模型。该模型利用地面气体分析仪的臭氧自动测量数据进行了训练和验证。使用了随机森林和提升机器学习模型。根据ERA5再分析,臭氧值的平均绝对误差超过16ppb,平均百分比误差为80%。使用机器学习模型计算的臭氧值误差分别为 6.7 ppb 和 29%。预测结果对季节、气温和植被最为敏感。利用训练有素的模型和再分析数据对 2017-2022 年的臭氧值进行了模拟和分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Russian Meteorology and Hydrology
Russian Meteorology and Hydrology METEOROLOGY & ATMOSPHERIC SCIENCES-
CiteScore
1.70
自引率
28.60%
发文量
44
审稿时长
4-8 weeks
期刊介绍: Russian Meteorology and Hydrology is a peer reviewed journal that covers topical issues of hydrometeorological science and practice: methods of forecasting weather and hydrological phenomena, climate monitoring issues, environmental pollution, space hydrometeorology, agrometeorology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信