{"title":"Using the Neural Network Technique for Lead Detection in Radar Images of Arctic Sea Ice","authors":"N. Yu. Zakhvatkina, I. A. Bychkova, V. G. Smirnov","doi":"10.3103/s1068373924040083","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Abstract</h3><p>The paper describes an algorithm to differentiate leads from sea ice using the dual polarization synthetic aperture radar (SAR) data from the Sentinel-1 satellite in an extrawide swath mode. The algorithm uses the polarimetric features of the sea surface signal obtained in the SAR images: the ratio between co- and cross-polarization. A technique is proposed for classifying the SAR images to identify discontinuities (cracks, leads) in drifting sea ice using the ratio and difference of polarizations together with texture features and the neural network implementation. The method was tested using the satellite data obtained over the Arctic seas in the Russian Federation.</p>","PeriodicalId":49581,"journal":{"name":"Russian Meteorology and Hydrology","volume":"206 1","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2024-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Russian Meteorology and Hydrology","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.3103/s1068373924040083","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
The paper describes an algorithm to differentiate leads from sea ice using the dual polarization synthetic aperture radar (SAR) data from the Sentinel-1 satellite in an extrawide swath mode. The algorithm uses the polarimetric features of the sea surface signal obtained in the SAR images: the ratio between co- and cross-polarization. A technique is proposed for classifying the SAR images to identify discontinuities (cracks, leads) in drifting sea ice using the ratio and difference of polarizations together with texture features and the neural network implementation. The method was tested using the satellite data obtained over the Arctic seas in the Russian Federation.
期刊介绍:
Russian Meteorology and Hydrology is a peer reviewed journal that covers topical issues of hydrometeorological science and practice: methods of forecasting weather and hydrological phenomena, climate monitoring issues, environmental pollution, space hydrometeorology, agrometeorology.