A Method for Object-oriented Detection of Deep Convection from Geostationary Satellite Imagery Using Machine Learning

IF 1.4 4区 地球科学 Q4 METEOROLOGY & ATMOSPHERIC SCIENCES
A. E. Shishov
{"title":"A Method for Object-oriented Detection of Deep Convection from Geostationary Satellite Imagery Using Machine Learning","authors":"A. E. Shishov","doi":"10.3103/s1068373924040071","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Abstract</h3><p>Due to high spatial and temporal resolution, geostationary meteorological satellite imagery is a valuable source of information on the development of deep convective clouds and related severe weather events. Some methods for automatic deep convection detection from satellite data provide a satisfactory probability of detection for independent datasets, but are characterized by a high false alarm rate. The paper gives a description of an algorithm for automatic detection of deep convective clouds with satellite imagery using gradient boosting, logistic regression, and artificial neural network models. The results of validation of the proposed method using dependent and independent data of ground-based observations for the period 2013–2020 are presented. A low false alarm rate and high probability of detection suggest that the algorithm can be used in the operational mode.</p>","PeriodicalId":49581,"journal":{"name":"Russian Meteorology and Hydrology","volume":"70 1","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2024-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Russian Meteorology and Hydrology","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.3103/s1068373924040071","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Due to high spatial and temporal resolution, geostationary meteorological satellite imagery is a valuable source of information on the development of deep convective clouds and related severe weather events. Some methods for automatic deep convection detection from satellite data provide a satisfactory probability of detection for independent datasets, but are characterized by a high false alarm rate. The paper gives a description of an algorithm for automatic detection of deep convective clouds with satellite imagery using gradient boosting, logistic regression, and artificial neural network models. The results of validation of the proposed method using dependent and independent data of ground-based observations for the period 2013–2020 are presented. A low false alarm rate and high probability of detection suggest that the algorithm can be used in the operational mode.

Abstract Image

利用机器学习从地球静止卫星图像中探测面向对象的深对流的方法
摘要由于具有高空间和时间分辨率,地球静止气象卫星图像是有关深对流云发展和相关恶劣天气事件的宝贵信息来源。从卫星数据中自动检测深对流的一些方法可为独立数据集提供令人满意的检测概率,但具有误报率高的特点。本文介绍了一种利用梯度提升、逻辑回归和人工神经网络模型对卫星图像中的深对流云进行自动检测的算法。文中介绍了使用 2013-2020 年期间地面观测的从属和独立数据对所提方法进行验证的结果。低误报率和高检测概率表明该算法可用于业务模式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Russian Meteorology and Hydrology
Russian Meteorology and Hydrology METEOROLOGY & ATMOSPHERIC SCIENCES-
CiteScore
1.70
自引率
28.60%
发文量
44
审稿时长
4-8 weeks
期刊介绍: Russian Meteorology and Hydrology is a peer reviewed journal that covers topical issues of hydrometeorological science and practice: methods of forecasting weather and hydrological phenomena, climate monitoring issues, environmental pollution, space hydrometeorology, agrometeorology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信