{"title":"Application of Convolutional Neural Networks for Detecting Sea Ice Leads in the Laptev Sea with Landsat-8 Satellite Imagery","authors":"K. G. Kortikova, I. A. Bychkova","doi":"10.3103/s1068373924040046","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Abstract</h3><p>A method for detecting leads in the ice of the Arctic seas from satellite images of the visible range is presented. It is shown that sea ice leads are formed under the influence of dynamic processes in the ice cover, such as convergence, drift, and deformation of sea ice, as well as during the interaction of drifting ice with icebergs that have gone aground. The method for identifying sea ice leads is based on the use of artificial intelligence. To analyze the Landsat-8 satellite imagery, a convolutional neural network (U-Net architecture) was used. The method was tested using the satellite images of the visible spectral range that were obtained for the Laptev Sea. The results showed that the lead detection accuracy was above 80%. The method of the minimum rotated rectangle surrounding the polygon was used to determine the geometric parameters of the leads (length, width, inflection points).</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.3103/s1068373924040046","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
A method for detecting leads in the ice of the Arctic seas from satellite images of the visible range is presented. It is shown that sea ice leads are formed under the influence of dynamic processes in the ice cover, such as convergence, drift, and deformation of sea ice, as well as during the interaction of drifting ice with icebergs that have gone aground. The method for identifying sea ice leads is based on the use of artificial intelligence. To analyze the Landsat-8 satellite imagery, a convolutional neural network (U-Net architecture) was used. The method was tested using the satellite images of the visible spectral range that were obtained for the Laptev Sea. The results showed that the lead detection accuracy was above 80%. The method of the minimum rotated rectangle surrounding the polygon was used to determine the geometric parameters of the leads (length, width, inflection points).
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.