System Identification Based on Experimental Technique Using Stability Boundary Locus Method for Linear Fractional Order Systems

IF 2.9 4区 综合性期刊 Q1 Multidisciplinary
Ali Yüce
{"title":"System Identification Based on Experimental Technique Using Stability Boundary Locus Method for Linear Fractional Order Systems","authors":"Ali Yüce","doi":"10.1007/s13369-024-09250-9","DOIUrl":null,"url":null,"abstract":"<p>Fractional calculus is an important mathematical tool that is widely used in control systems. It is established in the literature that fractional order models are more accurate and more effective in system modelling. In this study, an alternative and novel technique is proposed to identify the fractional order time-delayed model of an unknown system. The method is based on obtaining the approximate stability boundary locus (SBL) curve of the unknown system by applying three different experimental tests. Three points on the SBL curve are determined by the experimental tests and then the parameters of the fractional order time-delayed model are computed by solving the nonlinear systems of equation. The system model with double fractional order element plus a time delay is obtained using the proposed method. The proposed method is explained through simulations on a twin rotor system. The proposed method is also used in model order reduction calculation of the higher order transfer functions.</p>","PeriodicalId":8109,"journal":{"name":"Arabian Journal for Science and Engineering","volume":"33 1","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2024-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Arabian Journal for Science and Engineering","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1007/s13369-024-09250-9","RegionNum":4,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Multidisciplinary","Score":null,"Total":0}
引用次数: 0

Abstract

Fractional calculus is an important mathematical tool that is widely used in control systems. It is established in the literature that fractional order models are more accurate and more effective in system modelling. In this study, an alternative and novel technique is proposed to identify the fractional order time-delayed model of an unknown system. The method is based on obtaining the approximate stability boundary locus (SBL) curve of the unknown system by applying three different experimental tests. Three points on the SBL curve are determined by the experimental tests and then the parameters of the fractional order time-delayed model are computed by solving the nonlinear systems of equation. The system model with double fractional order element plus a time delay is obtained using the proposed method. The proposed method is explained through simulations on a twin rotor system. The proposed method is also used in model order reduction calculation of the higher order transfer functions.

Abstract Image

基于实验技术的系统识别,使用线性分数阶系统的稳定边界焦点法
分数微积分是一种重要的数学工具,被广泛应用于控制系统中。文献证实,分数阶模型在系统建模中更为精确和有效。本研究提出了一种替代性的新技术,用于识别未知系统的分数阶延时模型。该方法的基础是通过三种不同的实验测试获得未知系统的近似稳定边界点(SBL)曲线。通过实验测试确定 SBL 曲线上的三个点,然后通过求解非线性方程组计算分数阶延时模型的参数。利用所提出的方法,可获得双分数阶元素加时间延迟的系统模型。通过对双转子系统的仿真解释了所提出的方法。建议的方法还可用于高阶传递函数的模型阶次缩减计算。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Arabian Journal for Science and Engineering
Arabian Journal for Science and Engineering 综合性期刊-综合性期刊
CiteScore
5.20
自引率
3.40%
发文量
0
审稿时长
4.3 months
期刊介绍: King Fahd University of Petroleum & Minerals (KFUPM) partnered with Springer to publish the Arabian Journal for Science and Engineering (AJSE). AJSE, which has been published by KFUPM since 1975, is a recognized national, regional and international journal that provides a great opportunity for the dissemination of research advances from the Kingdom of Saudi Arabia, MENA and the world.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信