Categorification of the plurigenera of Gorenstein normal surface singularities

IF 1 3区 数学 Q1 MATHEMATICS
András Némethi, Gergő Schefler
{"title":"Categorification of the plurigenera of Gorenstein normal surface singularities","authors":"András Némethi, Gergő Schefler","doi":"10.1007/s00209-024-03530-8","DOIUrl":null,"url":null,"abstract":"<p>Consider a complex normal surface singularity and its three plurigenera, the <i>m</i>-th <span>\\(L^2\\)</span>–plurigenus of Watanabe, the <i>m</i>-th plurigenus of Knöller and the <i>m</i>-th log-plurigenus of Morales. For any of these invariants we construct a double graded <span>\\(\\mathbb {Z}[U]\\)</span>–module, whose Euler characteristic is the chosen plurigenus. The three outputs are compared with the analytic lattice cohomology of the germ, whose Euler characteristic is the classical geometric genus.</p>","PeriodicalId":18278,"journal":{"name":"Mathematische Zeitschrift","volume":"4 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematische Zeitschrift","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00209-024-03530-8","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Consider a complex normal surface singularity and its three plurigenera, the m-th \(L^2\)–plurigenus of Watanabe, the m-th plurigenus of Knöller and the m-th log-plurigenus of Morales. For any of these invariants we construct a double graded \(\mathbb {Z}[U]\)–module, whose Euler characteristic is the chosen plurigenus. The three outputs are compared with the analytic lattice cohomology of the germ, whose Euler characteristic is the classical geometric genus.

戈伦斯坦法向曲面奇点的复元分类
考虑一个复正则面奇异性及其三个复元,即渡边(Watanabe)的第m个(L^2\)复元、诺勒(Knöller)的第m个复元和莫拉莱斯(Morales)的第m个对数复元。对于这些不变式中的任何一个,我们都会构造一个双分级(\mathbb {Z}[U]\ )模块,其欧拉特征就是所选的诸元。我们将这三个结果与胚芽的解析晶格同调进行比较,后者的欧拉特征是经典几何属。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.60
自引率
0.00%
发文量
236
审稿时长
3-6 weeks
期刊介绍: "Mathematische Zeitschrift" is devoted to pure and applied mathematics. Reviews, problems etc. will not be published.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信