Roles of energy and entropy in multiscale dynamics and thermodynamics

IF 1.1 Q3 PHYSICS, MULTIDISCIPLINARY
Miroslav Grmela
{"title":"Roles of energy and entropy in multiscale dynamics and thermodynamics","authors":"Miroslav Grmela","doi":"10.1088/2399-6528/ad5b3a","DOIUrl":null,"url":null,"abstract":"Multiscale thermodynamics is a theory of relations among levels of description. Energy and entropy are its two main ingredients. Their roles in the time evolution describing approach of a level (starting level) to another level involving less details (target level) is examined on several examples, including the level on which macroscopic systems are seen as composed of microscopic particles, mesoscopic levels as kinetic theory of ideal and van der Waals gases, fluid mechanics, the level of chemical kinetics, and the level of equilibrium thermodynamics. The entropy enters the emergence of the target level in two roles. It expresses internal energy, that is the part of the energy that cannot be expressed in terms of the state variables used on the starting level, and it reveals emerging features characterizing the target level by sweeping away unimportant details. In the case when the target level is a mesoscopic level involving time evolution the roles of the energy and the entropy is taken by two different potentials that are related to their rates.","PeriodicalId":47089,"journal":{"name":"Journal of Physics Communications","volume":"25 1","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physics Communications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/2399-6528/ad5b3a","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Multiscale thermodynamics is a theory of relations among levels of description. Energy and entropy are its two main ingredients. Their roles in the time evolution describing approach of a level (starting level) to another level involving less details (target level) is examined on several examples, including the level on which macroscopic systems are seen as composed of microscopic particles, mesoscopic levels as kinetic theory of ideal and van der Waals gases, fluid mechanics, the level of chemical kinetics, and the level of equilibrium thermodynamics. The entropy enters the emergence of the target level in two roles. It expresses internal energy, that is the part of the energy that cannot be expressed in terms of the state variables used on the starting level, and it reveals emerging features characterizing the target level by sweeping away unimportant details. In the case when the target level is a mesoscopic level involving time evolution the roles of the energy and the entropy is taken by two different potentials that are related to their rates.
能量和熵在多尺度动力学和热力学中的作用
多尺度热力学是一种描述各层次关系的理论。能量和熵是其两个主要成分。在描述从一个层次(起始层次)到另一个涉及较少细节的层次(目标层次)的时间演化过程中,能量和熵的作用在几个例子中进行了研究,包括宏观系统被视为由微观粒子组成的层次、作为理想气体和范德华气体动力学理论的中观层次、流体力学、化学动力学层次以及平衡热力学层次。熵在目标水平的出现中扮演着两种角色。它表示内能,即无法用起始水平上使用的状态变量来表示的那部分能量;它通过扫除不重要的细节来揭示目标水平的新特征。当目标水平是一个涉及时间演化的介观水平时,能量和熵的作用由两个不同的势来承担,这两个势与它们的速率有关。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Physics Communications
Journal of Physics Communications PHYSICS, MULTIDISCIPLINARY-
CiteScore
2.60
自引率
0.00%
发文量
114
审稿时长
10 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信