{"title":"When are KE-closed subcategories torsion-free classes?","authors":"Toshinori Kobayashi, Shunya Saito","doi":"10.1007/s00209-024-03536-2","DOIUrl":null,"url":null,"abstract":"<p>Let <i>R</i> be a commutative noetherian ring and denote by <span>\\({{\\,\\mathrm{\\textsf{mod}}\\,}}R\\)</span> the category of finitely generated <i>R</i>-modules. In this paper, we study KE-closed subcategories of <span>\\({{\\,\\mathrm{\\textsf{mod}}\\,}}R\\)</span>, that is, additive subcategories closed under kernels and extensions. We first give a characterization of KE-closed subcategories: <i>a KE-closed subcategory is a torsion-free class in a torsion-free class</i>. As an immediate application of the dual statement, we give a conceptual proof of Stanley-Wang’s result about narrow subcategories. Next, we classify the KE-closed subcategories of <span>\\({{\\,\\mathrm{\\textsf{mod}}\\,}}R\\)</span> when <span>\\(\\dim R \\le 1\\)</span> and when <i>R</i> is a two-dimensional normal domain. More precisely, in the former case, we prove that KE-closed subcategories coincide with torsion-free classes in <span>\\({{\\,\\mathrm{\\textsf{mod}}\\,}}R\\)</span>. Moreover, this condition implies <span>\\(\\dim R \\le 1\\)</span> when <i>R</i> is a homomorphic image of a Cohen-Macaulay ring (e.g. a finitely generated algebra over a regular ring). Thus, we give a complete answer for the title.</p>","PeriodicalId":18278,"journal":{"name":"Mathematische Zeitschrift","volume":"19 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2024-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematische Zeitschrift","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00209-024-03536-2","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
Let R be a commutative noetherian ring and denote by \({{\,\mathrm{\textsf{mod}}\,}}R\) the category of finitely generated R-modules. In this paper, we study KE-closed subcategories of \({{\,\mathrm{\textsf{mod}}\,}}R\), that is, additive subcategories closed under kernels and extensions. We first give a characterization of KE-closed subcategories: a KE-closed subcategory is a torsion-free class in a torsion-free class. As an immediate application of the dual statement, we give a conceptual proof of Stanley-Wang’s result about narrow subcategories. Next, we classify the KE-closed subcategories of \({{\,\mathrm{\textsf{mod}}\,}}R\) when \(\dim R \le 1\) and when R is a two-dimensional normal domain. More precisely, in the former case, we prove that KE-closed subcategories coincide with torsion-free classes in \({{\,\mathrm{\textsf{mod}}\,}}R\). Moreover, this condition implies \(\dim R \le 1\) when R is a homomorphic image of a Cohen-Macaulay ring (e.g. a finitely generated algebra over a regular ring). Thus, we give a complete answer for the title.
让 R 是交换无醚环,用 \({{\,\mathrm\{textsf{mod}}\,}}R\ 表示有限生成的 R 模块范畴。本文研究的是\({{\,\mathrm{textsf{mod}}\,}}R\) 的 KE 闭合子类,也就是在内核和扩展下闭合的可加子类。我们首先给出 KE 闭合子类的特征:KE 闭合子类是无扭类中的无扭类。作为对偶声明的直接应用,我们给出了斯坦利-王关于窄子类结果的概念证明。接下来,当 \(\dim R \le 1\) 和 R 是二维法域时,我们对 \({{\,\mathrm{textsf{mod}}\,}}R\) 的 KE-closed 子类进行分类。更确切地说,在前一种情况下,我们证明 KE 闭合子类与 \({{\,\mathrm{textsf{mod}}\,}}R\) 中的无扭类重合。此外,当 R 是一个科恩-麦考莱环(比如正则环上的有限生成代数)的同态映像时,这个条件意味着 ( (dim R \le 1\ )。因此,我们给出了题目的完整答案。