Combinatorics of semi-toric degenerations of Schubert varieties in type C

IF 1 3区 数学 Q1 MATHEMATICS
Naoki Fujita, Yuta Nishiyama
{"title":"Combinatorics of semi-toric degenerations of Schubert varieties in type C","authors":"Naoki Fujita, Yuta Nishiyama","doi":"10.1007/s00209-024-03531-7","DOIUrl":null,"url":null,"abstract":"<p>An approach to Schubert calculus is to realize Schubert classes as concrete combinatorial objects such as Schubert polynomials. Using the polytope ring of the Gelfand–Tsetlin polytopes, Kiritchenko–Smirnov–Timorin realized each Schubert class as a sum of reduced Kogan faces. The first named author introduced a generalization of reduced Kogan faces to symplectic Gelfand–Tsetlin polytopes using a semi-toric degeneration of a Schubert variety, and extended the result of Kiritchenko–Smirnov–Timorin to type <i>C</i> case. In this paper, we introduce a combinatorial model to this type <i>C</i> generalization using a kind of pipe dream with self-crossings. As an application, we prove that the type <i>C</i> generalization can be constructed by skew mitosis operators.</p>","PeriodicalId":18278,"journal":{"name":"Mathematische Zeitschrift","volume":"137 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2024-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematische Zeitschrift","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00209-024-03531-7","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

An approach to Schubert calculus is to realize Schubert classes as concrete combinatorial objects such as Schubert polynomials. Using the polytope ring of the Gelfand–Tsetlin polytopes, Kiritchenko–Smirnov–Timorin realized each Schubert class as a sum of reduced Kogan faces. The first named author introduced a generalization of reduced Kogan faces to symplectic Gelfand–Tsetlin polytopes using a semi-toric degeneration of a Schubert variety, and extended the result of Kiritchenko–Smirnov–Timorin to type C case. In this paper, we introduce a combinatorial model to this type C generalization using a kind of pipe dream with self-crossings. As an application, we prove that the type C generalization can be constructed by skew mitosis operators.

Abstract Image

C 型舒伯特变种半oric退化的组合学
舒伯特微积分的一种方法是将舒伯特类实现为具体的组合对象,如舒伯特多项式。基里琴科-斯米尔诺夫-季莫林(Kiritchenko-Smirnov-Timorin)利用格尔芬-策林多面体的多面体环,把每个舒伯特类看作是还原科根面的总和。第一位作者利用舒伯特多面体的半oric退化,将还原科根面推广到交点格尔芬-策林多面体,并将基里琴科-斯米尔诺夫-季莫林的结果推广到 C 型情况。在本文中,我们利用一种带有自交叉的管道梦,为这种 C 型广义引入了一个组合模型。作为应用,我们证明了 C 型广义可以用偏斜有丝分裂算子来构造。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.60
自引率
0.00%
发文量
236
审稿时长
3-6 weeks
期刊介绍: "Mathematische Zeitschrift" is devoted to pure and applied mathematics. Reviews, problems etc. will not be published.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信