Nonlocal energy functionals and determinantal point processes on non-smooth domains

IF 1 3区 数学 Q1 MATHEMATICS
Zhengjiang Lin
{"title":"Nonlocal energy functionals and determinantal point processes on non-smooth domains","authors":"Zhengjiang Lin","doi":"10.1007/s00209-024-03540-6","DOIUrl":null,"url":null,"abstract":"<p>Given a nonnegative integrable function <i>J</i> on <span>\\(\\mathbb {R}^n\\)</span>, we relate the asymptotic properties of the nonlocal energy functional </p><span>$$\\begin{aligned} \\int _{\\Omega } \\int _{\\Omega ^c} J \\bigg (\\frac{x-y}{t}\\bigg ) \\ dx dy \\end{aligned}$$</span><p>as <span>\\(t \\rightarrow 0^+\\)</span> with the boundary properties of a given domain <span>\\(\\Omega \\subset \\mathbb {R}^n\\)</span>, focusing mainly on domains with “rough” boundaries. Then, we apply these results to the fluctuations of many determinantal point processes, showing (under suitable hypotheses) that their variances measure the Minkowski dimension of <span>\\(\\partial \\Omega \\)</span>.</p>","PeriodicalId":18278,"journal":{"name":"Mathematische Zeitschrift","volume":"242 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2024-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematische Zeitschrift","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00209-024-03540-6","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Given a nonnegative integrable function J on \(\mathbb {R}^n\), we relate the asymptotic properties of the nonlocal energy functional

$$\begin{aligned} \int _{\Omega } \int _{\Omega ^c} J \bigg (\frac{x-y}{t}\bigg ) \ dx dy \end{aligned}$$

as \(t \rightarrow 0^+\) with the boundary properties of a given domain \(\Omega \subset \mathbb {R}^n\), focusing mainly on domains with “rough” boundaries. Then, we apply these results to the fluctuations of many determinantal point processes, showing (under suitable hypotheses) that their variances measure the Minkowski dimension of \(\partial \Omega \).

Abstract Image

非光滑域上的非局部能量函数和行列式点过程
给定一个在 \(\mathbb {R}^n\)上的非负可积分函数 J,我们将非局部能量函数 $$\begin{aligned} 的渐近特性联系起来。\int _\{Omega }\int _\{Omega ^c}J \bigg (\frac{x-y}{t}\bigg ) \dx dy \end{aligned}$$当 \(t \rightarrow 0^+\) 与给定域 \(\Omega \subset \mathbb {R}^n\)的边界属性相关时,主要关注具有 "粗糙 "边界的域。然后,我们将这些结果应用于许多行列式点过程的波动,证明(在合适的假设条件下)它们的方差测量了(\partial \Omega \)的闵科夫斯基维度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.60
自引率
0.00%
发文量
236
审稿时长
3-6 weeks
期刊介绍: "Mathematische Zeitschrift" is devoted to pure and applied mathematics. Reviews, problems etc. will not be published.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信