Unboundedness of Tate–Shafarevich groups in fixed cyclic extensions

IF 1 3区 数学 Q1 MATHEMATICS
Yi Ouyang, Jianfeng Xie
{"title":"Unboundedness of Tate–Shafarevich groups in fixed cyclic extensions","authors":"Yi Ouyang, Jianfeng Xie","doi":"10.1007/s00209-024-03527-3","DOIUrl":null,"url":null,"abstract":"<p>In this paper we prove two unboundedness results about the Tate–Shafarevich groups of abelian varieties in a fixed nontrivial cyclic extension <i>L</i>/<i>K</i> of global fields, firstly in the case that <i>K</i> is a number field and the abelian varieties are elliptic curves, secondly in the case that <i>K</i> is a global field, [<i>L</i> : <i>K</i>] is a 2-power and the abelian varieties are principally polarized.</p>","PeriodicalId":18278,"journal":{"name":"Mathematische Zeitschrift","volume":"48 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2024-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematische Zeitschrift","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00209-024-03527-3","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper we prove two unboundedness results about the Tate–Shafarevich groups of abelian varieties in a fixed nontrivial cyclic extension L/K of global fields, firstly in the case that K is a number field and the abelian varieties are elliptic curves, secondly in the case that K is a global field, [L : K] is a 2-power and the abelian varieties are principally polarized.

Abstract Image

固定循环扩展中塔特-沙法列维奇群的无界性
在本文中,我们证明了两个关于在全局域的固定非小循环扩展L/K中的无方变体的塔特-沙法列维奇群的无界性结果,首先是在K是数域且无方变体是椭圆曲线的情况下,其次是在K是全局域、[L : K]是2幂且无方变体是主极化的情况下。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.60
自引率
0.00%
发文量
236
审稿时长
3-6 weeks
期刊介绍: "Mathematische Zeitschrift" is devoted to pure and applied mathematics. Reviews, problems etc. will not be published.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信