{"title":"Crust and Upper Mantle Density Structures beneath the Eastern Tianshan Region and Its Tectonic Implications","authors":"Yiming Liu, Chao Chen, Qing Liang, Zhengwang Hu","doi":"10.1007/s12583-021-1599-4","DOIUrl":null,"url":null,"abstract":"<p>The deformation mechanisms of the Tianshan orogenic belt (TOB) are one of the most important unresolved issues in the collision of the Indian and Eurasian plates. To better understand the lithospheric deformation of the eastern Tianshan orogenic belt, we combined the S-wave tomography and gravity data to develop a three-dimensional (3D) density model of the crust and upper mantle beneath the eastern Tianshan area. Results show that the crust of the eastern Tianshan is mainly characterized by positive density anomalies, revealing widespread subduction-related magmatism during the Paleozoic. We however have also observed extensive low-density anomalies beneath the eastern Tianshan at depths deeper than ∼100 km, which is likely linked to a relatively hot mantle. The most fundamental differences of the lithosphere within the eastern Tianshan occur in the uppermost mantle. The uppermost mantle layers in the Bogda Shan and Harlik Shan are relatively dense. This is likely associated with an eclogite body in the uppermost mantle. The most significant negative anomaly of the uppermost mantle is however found in the Jueluotage tectonic belt and the central Tianshan Block and is possibly associated with depleted mantle material. We suggest that these differences related to compositional changes may control the strength of the lithospheric mantle and have affected the uplift of the northern and southern segments of the eastern Tianshan after the Permian.</p>","PeriodicalId":15607,"journal":{"name":"Journal of Earth Science","volume":"2012 1","pages":""},"PeriodicalIF":4.1000,"publicationDate":"2024-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Earth Science","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1007/s12583-021-1599-4","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The deformation mechanisms of the Tianshan orogenic belt (TOB) are one of the most important unresolved issues in the collision of the Indian and Eurasian plates. To better understand the lithospheric deformation of the eastern Tianshan orogenic belt, we combined the S-wave tomography and gravity data to develop a three-dimensional (3D) density model of the crust and upper mantle beneath the eastern Tianshan area. Results show that the crust of the eastern Tianshan is mainly characterized by positive density anomalies, revealing widespread subduction-related magmatism during the Paleozoic. We however have also observed extensive low-density anomalies beneath the eastern Tianshan at depths deeper than ∼100 km, which is likely linked to a relatively hot mantle. The most fundamental differences of the lithosphere within the eastern Tianshan occur in the uppermost mantle. The uppermost mantle layers in the Bogda Shan and Harlik Shan are relatively dense. This is likely associated with an eclogite body in the uppermost mantle. The most significant negative anomaly of the uppermost mantle is however found in the Jueluotage tectonic belt and the central Tianshan Block and is possibly associated with depleted mantle material. We suggest that these differences related to compositional changes may control the strength of the lithospheric mantle and have affected the uplift of the northern and southern segments of the eastern Tianshan after the Permian.
期刊介绍:
Journal of Earth Science (previously known as Journal of China University of Geosciences), issued bimonthly through China University of Geosciences, covers all branches of geology and related technology in the exploration and utilization of earth resources. Founded in 1990 as the Journal of China University of Geosciences, this publication is expanding its breadth of coverage to an international scope. Coverage includes such topics as geology, petrology, mineralogy, ore deposit geology, tectonics, paleontology, stratigraphy, sedimentology, geochemistry, geophysics and environmental sciences.
Articles published in recent issues include Tectonics in the Northwestern West Philippine Basin; Creep Damage Characteristics of Soft Rock under Disturbance Loads; Simplicial Indicator Kriging; Tephra Discovered in High Resolution Peat Sediment and Its Indication to Climatic Event.
The journal offers discussion of new theories, methods and discoveries; reports on recent achievements in the geosciences; and timely reviews of selected subjects.