Chunfa Wang, Yudong Li, Yan Li, Yajie Fan, Zhiqiang Feng
{"title":"Coupling effect of large deformation and surface roughness on dynamic frictional contact behaviors of hyperelastic material","authors":"Chunfa Wang, Yudong Li, Yan Li, Yajie Fan, Zhiqiang Feng","doi":"10.1007/s00466-024-02513-0","DOIUrl":null,"url":null,"abstract":"<p>The energy is a crucial factor in dynamical contact analysis. And the complexity of real-world surface morphologies characterized by roughness, poses a considerable challenge for accurately predicting their dynamic contact behaviors. Hence, it is meaningful to explore the influence of surface roughness on energy dissipation. In this study, the two-dimensional geometry with randomly rough surface is reconstructed based on Karhunen–Loève expansion and isogeometric collocation method. And a contact algorithm is tailored for dynamic frictional contact problems by incorporating the Bi-potential method into isogeometric analysis. Numerical results show that roughness factors such as the correlation length and square roughness of the randomly rough surface significantly affect the maximum ratio of real contact area to the normal contact area and the rate of energy dissipation. This work could provide a reference for future research on the dynamic contact between rough surfaces.</p>","PeriodicalId":55248,"journal":{"name":"Computational Mechanics","volume":"23 1","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2024-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Mechanics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s00466-024-02513-0","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
The energy is a crucial factor in dynamical contact analysis. And the complexity of real-world surface morphologies characterized by roughness, poses a considerable challenge for accurately predicting their dynamic contact behaviors. Hence, it is meaningful to explore the influence of surface roughness on energy dissipation. In this study, the two-dimensional geometry with randomly rough surface is reconstructed based on Karhunen–Loève expansion and isogeometric collocation method. And a contact algorithm is tailored for dynamic frictional contact problems by incorporating the Bi-potential method into isogeometric analysis. Numerical results show that roughness factors such as the correlation length and square roughness of the randomly rough surface significantly affect the maximum ratio of real contact area to the normal contact area and the rate of energy dissipation. This work could provide a reference for future research on the dynamic contact between rough surfaces.
期刊介绍:
The journal reports original research of scholarly value in computational engineering and sciences. It focuses on areas that involve and enrich the application of mechanics, mathematics and numerical methods. It covers new methods and computationally-challenging technologies.
Areas covered include method development in solid, fluid mechanics and materials simulations with application to biomechanics and mechanics in medicine, multiphysics, fracture mechanics, multiscale mechanics, particle and meshfree methods. Additionally, manuscripts including simulation and method development of synthesis of material systems are encouraged.
Manuscripts reporting results obtained with established methods, unless they involve challenging computations, and manuscripts that report computations using commercial software packages are not encouraged.