Energy-efficient buildings with energy-efficient optimized models: a case study on thermal bridge detection

Alparslan Fişne, M. Mücahit Enes Yurtsever, Süleyman Eken
{"title":"Energy-efficient buildings with energy-efficient optimized models: a case study on thermal bridge detection","authors":"Alparslan Fişne, M. Mücahit Enes Yurtsever, Süleyman Eken","doi":"10.1007/s10586-024-04624-y","DOIUrl":null,"url":null,"abstract":"<p>Thermographic inspection is particularly effective in identifying thermal bridges because it visualizes temperature differences on the building’s surface. The focus of this work is on energy-efficient computing for deep learning-based thermal bridge (anomaly) detection models. In this study, we concentrate on object detection-based models such as Mask R-CNN_FPN_50, Swin-T Transformer, and FSAF. We do benchmark tests on TBRR dataset with varying input sizes. To overcome the energy-efficient design, we apply optimizations such as compression, latency reduction, and pruning to these models. After our proposed improvements, the inference of the anomaly detection model, Mask R-CNN_FPN_50 with compression technique, is approximately 7.5% faster than the original. Also, more acceleration is observed in all models with increasing input size. Another criterion we focus on is total energy gain for optimized models. Swin-T transformer has the most inference energy gains for all input sizes (<span>\\(\\approx\\)</span>27 J for 3000 x 4000 and <span>\\(\\approx\\)</span>14 J for 2400 x 3400). In conclusion, our study presents an optimization of size, weight, and power for vision-based anomaly detection for buildings.</p>","PeriodicalId":501576,"journal":{"name":"Cluster Computing","volume":"17 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cluster Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s10586-024-04624-y","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Thermographic inspection is particularly effective in identifying thermal bridges because it visualizes temperature differences on the building’s surface. The focus of this work is on energy-efficient computing for deep learning-based thermal bridge (anomaly) detection models. In this study, we concentrate on object detection-based models such as Mask R-CNN_FPN_50, Swin-T Transformer, and FSAF. We do benchmark tests on TBRR dataset with varying input sizes. To overcome the energy-efficient design, we apply optimizations such as compression, latency reduction, and pruning to these models. After our proposed improvements, the inference of the anomaly detection model, Mask R-CNN_FPN_50 with compression technique, is approximately 7.5% faster than the original. Also, more acceleration is observed in all models with increasing input size. Another criterion we focus on is total energy gain for optimized models. Swin-T transformer has the most inference energy gains for all input sizes (\(\approx\)27 J for 3000 x 4000 and \(\approx\)14 J for 2400 x 3400). In conclusion, our study presents an optimization of size, weight, and power for vision-based anomaly detection for buildings.

Abstract Image

采用节能优化模型的节能建筑:热桥检测案例研究
热成像检测在识别热桥方面尤为有效,因为它可以直观地显示建筑物表面的温差。这项工作的重点是基于深度学习的热桥(异常)检测模型的节能计算。在这项研究中,我们主要关注基于物体检测的模型,如 Mask R-CNN_FPN_50、Swin-T Transformer 和 FSAF。我们在不同输入大小的 TBRR 数据集上进行了基准测试。为了克服高能效设计,我们对这些模型进行了压缩、减少延迟和剪枝等优化。经过我们提出的改进后,采用压缩技术的异常检测模型 Mask R-CNN_FPN_50 的推理速度比原来快了约 7.5%。此外,随着输入大小的增加,所有模型的推理速度都有所加快。我们关注的另一个标准是优化模型的总能量增益。在所有输入尺寸下,Swin-T 变压器的推理能量增益最大(3000 x 4000 时为 27 J,2400 x 3400 时为 14 J)。总之,我们的研究提出了基于视觉的建筑物异常检测的尺寸、重量和功率优化方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信