An improved Tasmanian devil optimization algorithm based on sine-cosine strategy with dynamic weighting factors

Huanlong Zhang, Chenglin Guo, Jianwei Zhang, Xin Wang, Jiaxiang Zhang
{"title":"An improved Tasmanian devil optimization algorithm based on sine-cosine strategy with dynamic weighting factors","authors":"Huanlong Zhang, Chenglin Guo, Jianwei Zhang, Xin Wang, Jiaxiang Zhang","doi":"10.1007/s10586-024-04443-1","DOIUrl":null,"url":null,"abstract":"<p>In this paper, aiming at the problem that the balance between exploration and exploitation of traditional Tasmanian devil optimization algorithm is unflexible, and easy to fall into local optimum, an improved Tasmanian devil optimization algorithm (NTDO) based on the sine-cosine strategy of dynamic weighted factors is proposed. The designed method balances the global and local search capabilities of the algorithm, effectively improves the situation that the algorithm falls into local optimum, and integrally improves the optimization performance of the algorithm. Firstly, the good point set theory is used instead of the traditional random method to find the initial individuals, which can render the initial population is more evenly distributed in the search space and the population diversity is improved. Secondly, A sine-cosine strategy based on dynamic weighted factors is proposed to coordinate the global exploration and local optimization capabilities of the algorithm, and enhance the convergence accuracy of the algorithm. Thirdly, since Tasmanian devil is easy to fall into local optimum in the process of hunting prey, a nonlinear decline strategy based on oscillation factor is presented, which increases the search range of the algorithm and improves the ability of the algorithm to jump out of the local optimal value.Finally, 12 evaluation functions, cec2019 and cec2021 test functions commonly used in NTDO and TDO, WOA, DBO, PSO, GWO, DFPSO and PDGWO algorithms are compared and analyzed, and the experimental results show the effectiveness and feasibility of the scheme.</p>","PeriodicalId":501576,"journal":{"name":"Cluster Computing","volume":"67 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cluster Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s10586-024-04443-1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, aiming at the problem that the balance between exploration and exploitation of traditional Tasmanian devil optimization algorithm is unflexible, and easy to fall into local optimum, an improved Tasmanian devil optimization algorithm (NTDO) based on the sine-cosine strategy of dynamic weighted factors is proposed. The designed method balances the global and local search capabilities of the algorithm, effectively improves the situation that the algorithm falls into local optimum, and integrally improves the optimization performance of the algorithm. Firstly, the good point set theory is used instead of the traditional random method to find the initial individuals, which can render the initial population is more evenly distributed in the search space and the population diversity is improved. Secondly, A sine-cosine strategy based on dynamic weighted factors is proposed to coordinate the global exploration and local optimization capabilities of the algorithm, and enhance the convergence accuracy of the algorithm. Thirdly, since Tasmanian devil is easy to fall into local optimum in the process of hunting prey, a nonlinear decline strategy based on oscillation factor is presented, which increases the search range of the algorithm and improves the ability of the algorithm to jump out of the local optimal value.Finally, 12 evaluation functions, cec2019 and cec2021 test functions commonly used in NTDO and TDO, WOA, DBO, PSO, GWO, DFPSO and PDGWO algorithms are compared and analyzed, and the experimental results show the effectiveness and feasibility of the scheme.

Abstract Image

基于具有动态加权因子的正弦余弦策略的改进型塔斯马尼亚恶魔优化算法
本文针对传统塔斯马尼亚魔鬼优化算法探索与利用平衡不灵活、易陷入局部最优的问题,提出了一种基于动态加权因子正余弦策略的改进塔斯马尼亚魔鬼优化算法(NTDO)。所设计的方法平衡了算法的全局和局部搜索能力,有效改善了算法陷入局部最优的情况,综合提高了算法的优化性能。首先,用好点集理论代替传统的随机方法寻找初始个体,使初始种群在搜索空间中分布更均匀,提高了种群多样性。其次,提出了基于动态加权因子的正余弦策略,协调了算法的全局探索和局部优化能力,提高了算法的收敛精度。第三,由于塔斯马尼亚恶魔在捕食猎物过程中容易陷入局部最优,提出了基于振荡因子的非线性下降策略,增加了算法的搜索范围,提高了算法跳出局部最优值的能力。最后,对 NTDO 和 TDO、WOA、DBO、PSO、GWO、DFPSO 和 PDGWO 算法中常用的 12 个评价函数、cec2019 和 cec2021 测试函数进行了对比分析,实验结果表明了该方案的有效性和可行性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信