{"title":"Graph realization of sets of integers","authors":"Piotr Wawrzyniak, Piotr Formanowicz","doi":"10.1007/s10910-024-01642-4","DOIUrl":null,"url":null,"abstract":"<div><p>Graph theory is used in many areas of chemical sciences, especially in molecular chemistry. It is particularly useful in the structural analysis of chemical compounds and in modeling chemical reactions. One of its applications concerns determining the structural formula of a chemical compound. This can be modeled as a variant of the well-known graph realization problem. In the classical version of the problem, a sequence of natural numbers is given, and the question is whether there exists a graph in which the vertices have degrees equal to the given numbers. In the variant considered in this paper, instead of a sequence of natural numbers, a sequence of sets of natural numbers is given, and the question is whether there exists a multigraph such that each of its vertices has a degree equal to a number from one of the sets. This variant of the graph realization problem matches the nature of the problem of determining the structural formula of a chemical compound better than other variants considered in the literature. We propose a polynomial time exact algorithm solving this variant of the problem.</p></div>","PeriodicalId":648,"journal":{"name":"Journal of Mathematical Chemistry","volume":"62 8","pages":"1965 - 1981"},"PeriodicalIF":1.7000,"publicationDate":"2024-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10910-024-01642-4.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical Chemistry","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s10910-024-01642-4","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Graph theory is used in many areas of chemical sciences, especially in molecular chemistry. It is particularly useful in the structural analysis of chemical compounds and in modeling chemical reactions. One of its applications concerns determining the structural formula of a chemical compound. This can be modeled as a variant of the well-known graph realization problem. In the classical version of the problem, a sequence of natural numbers is given, and the question is whether there exists a graph in which the vertices have degrees equal to the given numbers. In the variant considered in this paper, instead of a sequence of natural numbers, a sequence of sets of natural numbers is given, and the question is whether there exists a multigraph such that each of its vertices has a degree equal to a number from one of the sets. This variant of the graph realization problem matches the nature of the problem of determining the structural formula of a chemical compound better than other variants considered in the literature. We propose a polynomial time exact algorithm solving this variant of the problem.
期刊介绍:
The Journal of Mathematical Chemistry (JOMC) publishes original, chemically important mathematical results which use non-routine mathematical methodologies often unfamiliar to the usual audience of mainstream experimental and theoretical chemistry journals. Furthermore JOMC publishes papers on novel applications of more familiar mathematical techniques and analyses of chemical problems which indicate the need for new mathematical approaches.
Mathematical chemistry is a truly interdisciplinary subject, a field of rapidly growing importance. As chemistry becomes more and more amenable to mathematically rigorous study, it is likely that chemistry will also become an alert and demanding consumer of new mathematical results. The level of complexity of chemical problems is often very high, and modeling molecular behaviour and chemical reactions does require new mathematical approaches. Chemistry is witnessing an important shift in emphasis: simplistic models are no longer satisfactory, and more detailed mathematical understanding of complex chemical properties and phenomena are required. From theoretical chemistry and quantum chemistry to applied fields such as molecular modeling, drug design, molecular engineering, and the development of supramolecular structures, mathematical chemistry is an important discipline providing both explanations and predictions. JOMC has an important role in advancing chemistry to an era of detailed understanding of molecules and reactions.